Yi Chen, Tong Wu, Qi Li, Ming-Jie Li, Na Yu, Li-Jueyi Meng, Xian-Jin Chen, Bang-Teng Chi, Shi-De Li, Su-Ning Huang, Gang Chen, Yu-Ping Ye, Dan-Ming Wei
{"title":"SAE1 May Play a Pro-Carcinogenic Role in Pancreatic Adenocarcinoma: A Comprehensive Study Integrating Multiple Pieces of Evidence","authors":"Yi Chen, Tong Wu, Qi Li, Ming-Jie Li, Na Yu, Li-Jueyi Meng, Xian-Jin Chen, Bang-Teng Chi, Shi-De Li, Su-Ning Huang, Gang Chen, Yu-Ping Ye, Dan-Ming Wei","doi":"10.1049/syb2.70017","DOIUrl":null,"url":null,"abstract":"<p>SAE1, a key factor in tumour development, has not been thoroughly examined in pancreatic adenocarcinoma (PAAD), a cancer with high incidence and poor prognosis. We conducted a comprehensive study, integrating mRNA data, immunohistochemistry, CRISPR-modified cell line analysis and single-cell RNA sequencing to assess SAE1's role in PAAD. We also used ChIP-Seq to explore SAE1's transcriptional regulation and analysed clinical data, drug sensitivity and molecular docking models. SAE1 mRNA was significantly overexpressed in PAAD, with a substantial impact on cell proliferation and migration. Functional analyses linked SAE1 to cell cycle and DNA replication pathways, suggesting a role in PAAD development. Our study indicates that SAE1 may promote PAAD through cell cycle pathways, with FOXA1 potentially regulating SAE1's abnormal behaviour.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SAE1, a key factor in tumour development, has not been thoroughly examined in pancreatic adenocarcinoma (PAAD), a cancer with high incidence and poor prognosis. We conducted a comprehensive study, integrating mRNA data, immunohistochemistry, CRISPR-modified cell line analysis and single-cell RNA sequencing to assess SAE1's role in PAAD. We also used ChIP-Seq to explore SAE1's transcriptional regulation and analysed clinical data, drug sensitivity and molecular docking models. SAE1 mRNA was significantly overexpressed in PAAD, with a substantial impact on cell proliferation and migration. Functional analyses linked SAE1 to cell cycle and DNA replication pathways, suggesting a role in PAAD development. Our study indicates that SAE1 may promote PAAD through cell cycle pathways, with FOXA1 potentially regulating SAE1's abnormal behaviour.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.