SAE1 May Play a Pro-Carcinogenic Role in Pancreatic Adenocarcinoma: A Comprehensive Study Integrating Multiple Pieces of Evidence

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Yi Chen, Tong Wu, Qi Li, Ming-Jie Li, Na Yu, Li-Jueyi Meng, Xian-Jin Chen, Bang-Teng Chi, Shi-De Li, Su-Ning Huang, Gang Chen, Yu-Ping Ye, Dan-Ming Wei
{"title":"SAE1 May Play a Pro-Carcinogenic Role in Pancreatic Adenocarcinoma: A Comprehensive Study Integrating Multiple Pieces of Evidence","authors":"Yi Chen,&nbsp;Tong Wu,&nbsp;Qi Li,&nbsp;Ming-Jie Li,&nbsp;Na Yu,&nbsp;Li-Jueyi Meng,&nbsp;Xian-Jin Chen,&nbsp;Bang-Teng Chi,&nbsp;Shi-De Li,&nbsp;Su-Ning Huang,&nbsp;Gang Chen,&nbsp;Yu-Ping Ye,&nbsp;Dan-Ming Wei","doi":"10.1049/syb2.70017","DOIUrl":null,"url":null,"abstract":"<p>SAE1, a key factor in tumour development, has not been thoroughly examined in pancreatic adenocarcinoma (PAAD), a cancer with high incidence and poor prognosis. We conducted a comprehensive study, integrating mRNA data, immunohistochemistry, CRISPR-modified cell line analysis and single-cell RNA sequencing to assess SAE1's role in PAAD. We also used ChIP-Seq to explore SAE1's transcriptional regulation and analysed clinical data, drug sensitivity and molecular docking models. SAE1 mRNA was significantly overexpressed in PAAD, with a substantial impact on cell proliferation and migration. Functional analyses linked SAE1 to cell cycle and DNA replication pathways, suggesting a role in PAAD development. Our study indicates that SAE1 may promote PAAD through cell cycle pathways, with FOXA1 potentially regulating SAE1's abnormal behaviour.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SAE1, a key factor in tumour development, has not been thoroughly examined in pancreatic adenocarcinoma (PAAD), a cancer with high incidence and poor prognosis. We conducted a comprehensive study, integrating mRNA data, immunohistochemistry, CRISPR-modified cell line analysis and single-cell RNA sequencing to assess SAE1's role in PAAD. We also used ChIP-Seq to explore SAE1's transcriptional regulation and analysed clinical data, drug sensitivity and molecular docking models. SAE1 mRNA was significantly overexpressed in PAAD, with a substantial impact on cell proliferation and migration. Functional analyses linked SAE1 to cell cycle and DNA replication pathways, suggesting a role in PAAD development. Our study indicates that SAE1 may promote PAAD through cell cycle pathways, with FOXA1 potentially regulating SAE1's abnormal behaviour.

Abstract Image

SAE1可能在胰腺腺癌中起促癌作用:一项综合多项证据的综合研究
胰腺腺癌(PAAD)是一种发病率高、预后差的癌症,但SAE1作为肿瘤发展的关键因子尚未得到全面的研究。我们进行了综合研究,结合mRNA数据、免疫组织化学、crispr修饰细胞系分析和单细胞RNA测序来评估SAE1在PAAD中的作用。我们还利用ChIP-Seq技术探索了SAE1的转录调控,分析了临床数据、药物敏感性和分子对接模型。SAE1 mRNA在PAAD中显著过表达,对细胞增殖和迁移有重要影响。功能分析将SAE1与细胞周期和DNA复制途径联系起来,提示其在PAAD的发展中起作用。我们的研究表明SAE1可能通过细胞周期途径促进PAAD, FOXA1可能调节SAE1的异常行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信