Coverage Prediction in Mobile Communication Networks: A Deep Learning Approach With a Tabular Foundation Model

IF 0.9 Q4 TELECOMMUNICATIONS
Weiwei Jiang, Ao Liu, Yang Zhang, Haoyu Han, Jianbin Mu, Shang Liu, Weixi Gu, Sai Huang
{"title":"Coverage Prediction in Mobile Communication Networks: A Deep Learning Approach With a Tabular Foundation Model","authors":"Weiwei Jiang,&nbsp;Ao Liu,&nbsp;Yang Zhang,&nbsp;Haoyu Han,&nbsp;Jianbin Mu,&nbsp;Shang Liu,&nbsp;Weixi Gu,&nbsp;Sai Huang","doi":"10.1002/itl2.70034","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate coverage prediction in mobile communication networks is crucial for optimizing performance and ensuring reliable service. However, traditional methods often struggle with the complexity and dynamic nature of wireless environments. This study introduces a novel approach leveraging a deep learning model with a tabular foundation model, TabPFN, which utilizes in-context learning and a transformer-based architecture to surpass existing techniques. Experimental validation on a real-world dataset demonstrates the model's superior prediction accuracy and adaptability, outperforming gradient boosting decision trees and supervised deep learning models in terms of root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (<i>R</i><sup>2</sup>).</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate coverage prediction in mobile communication networks is crucial for optimizing performance and ensuring reliable service. However, traditional methods often struggle with the complexity and dynamic nature of wireless environments. This study introduces a novel approach leveraging a deep learning model with a tabular foundation model, TabPFN, which utilizes in-context learning and a transformer-based architecture to surpass existing techniques. Experimental validation on a real-world dataset demonstrates the model's superior prediction accuracy and adaptability, outperforming gradient boosting decision trees and supervised deep learning models in terms of root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2).

移动通信网络覆盖预测:基于表格基础模型的深度学习方法
在移动通信网络中,准确的覆盖预测是优化网络性能和保证业务可靠性的关键。然而,传统的方法往往与无线环境的复杂性和动态性作斗争。本研究介绍了一种利用表格基础模型TabPFN的深度学习模型的新方法,该模型利用上下文学习和基于转换器的架构来超越现有技术。在真实数据集上的实验验证表明,该模型具有优越的预测精度和适应性,在均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)方面优于梯度增强决策树和监督深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信