{"title":"Identification and Validation of Glycosylation‑Related Genes in Ischemic Stroke Based on Bioinformatics and Machine Learning","authors":"Hui Zhang, Yanan Ji, Zhongquan Yi, Jing Zhao, Jianping Liu, Xianxian Zhang","doi":"10.1007/s12031-025-02352-5","DOIUrl":null,"url":null,"abstract":"<div><p>Ischemic stroke (IS) constitutes a severe neurological disorder with restricted treatment alternatives. Recent investigations have disclosed that glycosylation is closely associated with the occurrence and outcome of IS. Nevertheless, data on the transcriptomic dynamics of glycosylation in IS are lacking. The objective of this study was to undertake a comprehensive exploration of glycosylation-related genes (GRGs) in IS via bioinformatics and to assess their immune characteristics. In this study, through the intersection of genes from weighted gene co-expression network analysis, GRGs from five glycosylation pathways, and DEGs from differential expression analysis, 20 candidate GRGs were identified. Subsequently, through LASSO, Random Forest, and SVM-RFE, 3 hub GRGs (F5, PPP6C, and UBE2J1) were identified. Additional, a gene diagnostic model linked to glycosylation was developed and validated. The findings indicated that the diagnostic model could effectively distinguish between IS patients and healthy individuals in the training, validation, and merging datasets, indicating clinical relevance. Subsequently, by employing unsupervised clustering analysis, IS patients were classified into three clusters, and significant disparities were witnessed in immune cell infiltration among distinct clusters. In summary, this study successfully identified hub GRGs in IS and investigated the roles of these hub genes in the immune microenvironment, indicating potential clinical applications for IS.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02352-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke (IS) constitutes a severe neurological disorder with restricted treatment alternatives. Recent investigations have disclosed that glycosylation is closely associated with the occurrence and outcome of IS. Nevertheless, data on the transcriptomic dynamics of glycosylation in IS are lacking. The objective of this study was to undertake a comprehensive exploration of glycosylation-related genes (GRGs) in IS via bioinformatics and to assess their immune characteristics. In this study, through the intersection of genes from weighted gene co-expression network analysis, GRGs from five glycosylation pathways, and DEGs from differential expression analysis, 20 candidate GRGs were identified. Subsequently, through LASSO, Random Forest, and SVM-RFE, 3 hub GRGs (F5, PPP6C, and UBE2J1) were identified. Additional, a gene diagnostic model linked to glycosylation was developed and validated. The findings indicated that the diagnostic model could effectively distinguish between IS patients and healthy individuals in the training, validation, and merging datasets, indicating clinical relevance. Subsequently, by employing unsupervised clustering analysis, IS patients were classified into three clusters, and significant disparities were witnessed in immune cell infiltration among distinct clusters. In summary, this study successfully identified hub GRGs in IS and investigated the roles of these hub genes in the immune microenvironment, indicating potential clinical applications for IS.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.