Role of interatomic potentials in molecular dynamics simulations of silicon nanomachining

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Yi-Fan Li, Liang-Chi Zhang
{"title":"Role of interatomic potentials in molecular dynamics simulations of silicon nanomachining","authors":"Yi-Fan Li,&nbsp;Liang-Chi Zhang","doi":"10.1007/s40436-024-00544-7","DOIUrl":null,"url":null,"abstract":"<div><p>This investigation examines the impact of diverse interatomic potentials on the molecular dynamics simulation results of deformation and microstructural evolution during nanomachining. The results revealed that the application of the Stillinger-Weber (SW) potential led to the occurrence of significant stacking faults and dislocations. Conversely, the Tersoff potential prevented the initiation of dislocations during the loading segment. The Tersoff potential adept representation of the high-pressure phase transformation of monocrystalline silicon throughout the nanoindentation more accurately predicted mechanical parameters when compared with experimental data. Analytical bond-order potential (ABOP) accurately delineated the deformation mechanisms, including dislocation nucleation and amorphization, during nanoscratching. In contrast, the SW potential tended to underestimate the generation of high-pressure phases, with dislocation nucleation predicted by the SW potential dominating the plastic deformation of monocrystalline Si, contradicting the experimental observations. Consequently, this study concludes that the Tersoff potential and ABOP are the preferred choices for investigating the behavior of monocrystalline Si under nanomachining conditions.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"13 2","pages":"265 - 283"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00544-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation examines the impact of diverse interatomic potentials on the molecular dynamics simulation results of deformation and microstructural evolution during nanomachining. The results revealed that the application of the Stillinger-Weber (SW) potential led to the occurrence of significant stacking faults and dislocations. Conversely, the Tersoff potential prevented the initiation of dislocations during the loading segment. The Tersoff potential adept representation of the high-pressure phase transformation of monocrystalline silicon throughout the nanoindentation more accurately predicted mechanical parameters when compared with experimental data. Analytical bond-order potential (ABOP) accurately delineated the deformation mechanisms, including dislocation nucleation and amorphization, during nanoscratching. In contrast, the SW potential tended to underestimate the generation of high-pressure phases, with dislocation nucleation predicted by the SW potential dominating the plastic deformation of monocrystalline Si, contradicting the experimental observations. Consequently, this study concludes that the Tersoff potential and ABOP are the preferred choices for investigating the behavior of monocrystalline Si under nanomachining conditions.

原子间势在硅纳米加工分子动力学模拟中的作用
本研究考察了不同原子间电位对纳米加工过程中变形和微观结构演变的分子动力学模拟结果的影响。结果表明,Stillinger-Weber (SW)势的应用导致了明显的层错和位错的发生。相反,Tersoff势阻止了加载段中位错的发生。与实验数据相比,Tersoff势能较好地表征单晶硅在整个纳米压痕过程中的高压相变,更准确地预测了力学参数。分析键序势(ABOP)准确描述了纳米划痕过程中的形变机制,包括位错成核和非晶化。相反,SW势倾向于低估高压相的生成,SW势预测的位错成核主导了单晶Si的塑性变形,这与实验观察结果相矛盾。因此,本研究得出结论,Tersoff势和ABOP是研究纳米加工条件下单晶Si行为的首选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信