DUSTNet: An Unsupervised and Noise-Resistant Network for Martian Dust Storm Change Detection

Miyu Li;Junjie Li;Yumei Wang;Yu Liu;Haitao Xu
{"title":"DUSTNet: An Unsupervised and Noise-Resistant Network for Martian Dust Storm Change Detection","authors":"Miyu Li;Junjie Li;Yumei Wang;Yu Liu;Haitao Xu","doi":"10.1109/LGRS.2025.3561365","DOIUrl":null,"url":null,"abstract":"Mars exploration highlights the demand for identifying Martian surface changes, which has sparked research interests in planetary surface changes detection (PSCD). However, the prevailing PSCD algorithms face significant challenges due to the sparse features, low resolution, and high noise levels of captured images data. In this letter, we propose an unsupervised model, the dust unsupervised surface tracking network (DUSTNet), designed to track the surface changes caused by Martian dust storms. Our DUSTNet employs a network architecture with dual input branches to learn the cross-temporal complementary information from pretime and posttime image pairs. A multilevel feature complementary fusion (MFCF) module is utilized to enhance the ability to detect subtle changes. Considering the difficulties in image registration caused by illumination variations, noise, and other factors, we design a noise-resistant module (NRM) that mitigates pseudo-changes and improves the robustness of PSCD. In addition, we construct a dataset of Martian dust storms change detection (CD) based on the images captured by moderate resolution imaging camera (MoRIC) of China’s First Mars Mission TianWen-1 (the dataset is available at <uri>https://github.com/Limiyu1123/SDS</uri>). The detection performance of DUSTNet performs well on multiple Mars surface datasets, including our Martian dust storm test set. Our model achieves improvements of 2.5% in precision, 7.55% in <inline-formula> <tex-math>$F1$ </tex-math></inline-formula>-score, 6.54% in overall accuracy (OA), and 4.57% in Kappa over the state-of-the-art model.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10966914/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mars exploration highlights the demand for identifying Martian surface changes, which has sparked research interests in planetary surface changes detection (PSCD). However, the prevailing PSCD algorithms face significant challenges due to the sparse features, low resolution, and high noise levels of captured images data. In this letter, we propose an unsupervised model, the dust unsupervised surface tracking network (DUSTNet), designed to track the surface changes caused by Martian dust storms. Our DUSTNet employs a network architecture with dual input branches to learn the cross-temporal complementary information from pretime and posttime image pairs. A multilevel feature complementary fusion (MFCF) module is utilized to enhance the ability to detect subtle changes. Considering the difficulties in image registration caused by illumination variations, noise, and other factors, we design a noise-resistant module (NRM) that mitigates pseudo-changes and improves the robustness of PSCD. In addition, we construct a dataset of Martian dust storms change detection (CD) based on the images captured by moderate resolution imaging camera (MoRIC) of China’s First Mars Mission TianWen-1 (the dataset is available at https://github.com/Limiyu1123/SDS). The detection performance of DUSTNet performs well on multiple Mars surface datasets, including our Martian dust storm test set. Our model achieves improvements of 2.5% in precision, 7.55% in $F1$ -score, 6.54% in overall accuracy (OA), and 4.57% in Kappa over the state-of-the-art model.
DUSTNet:用于火星沙尘暴变化检测的无监督和抗噪声网络
火星探测凸显了识别火星表面变化的需求,这引发了行星表面变化探测(PSCD)的研究兴趣。然而,由于捕获图像数据的稀疏特征、低分辨率和高噪声水平,当前的PSCD算法面临着重大挑战。在这封信中,我们提出了一个无监督模型,即尘埃无监督表面跟踪网络(DUSTNet),旨在跟踪火星沙尘暴引起的表面变化。我们的DUSTNet采用双输入分支的网络架构,从前后时间图像对中学习跨时间的互补信息。利用多层特征互补融合(MFCF)模块增强检测细微变化的能力。针对光照变化、噪声等因素导致图像配准困难的问题,设计了一种抗噪模块(NRM),减轻了伪变化,提高了PSCD的鲁棒性。此外,基于中国首个火星任务“天文一号”的中分辨率成像仪(MoRIC)拍摄的图像,构建了火星沙尘暴变化探测数据集(CD)(数据集可在https://github.com/Limiyu1123/SDS上获取)。DUSTNet的探测性能在多个火星表面数据集上表现良好,包括我们的火星沙尘暴测试集。与最先进的模型相比,我们的模型在精度上提高了2.5%,在$F1$ -score上提高了7.55%,在总体精度(OA)上提高了6.54%,在Kappa上提高了4.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信