Changxian Xu;Jiliang Zhang;Keping Liu;Jian Wang;Zhongbo Sun
{"title":"Error-Accumulation Improved Newton Algorithm in Model Predictive Control for Novel Compliant Actuator-Driven Upper-Limb Exoskeleton","authors":"Changxian Xu;Jiliang Zhang;Keping Liu;Jian Wang;Zhongbo Sun","doi":"10.26599/TST.2024.9010145","DOIUrl":null,"url":null,"abstract":"In this paper, a Novel Compliant Actuator (NCA)-driven Upper-Limb Exoskeleton (ULE) with force controllable, impact resistance, and back drivability is designed to ensure the safety of the subject during Human-Robot Interaction (HRI) processing. Based on the designed NCA-driven ULE, this paper constructs a Model Predictive Control Scheme (MPCS) for force trajectory tracking, which minimises future tracking errors by solving an optimal control problem with inequality constraints. In addition, an Error-Accumulation Improved Newton Algorithm (EAINA) is proposed to solve the MPCS for suppressing various noises and external disturbances. The proposed EAINA is theoretically proved to have small steady state for noise conditions and stability of the EAINA using Lyapunov method. Finally, experimental results verify that the proposed MPCS solved by the EAINA in the NCA-driven ULE achieves robustness, fast convergence, strong tolerance and stability for trajectory rehabilitation task.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 5","pages":"1965-1979"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979799","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979799/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a Novel Compliant Actuator (NCA)-driven Upper-Limb Exoskeleton (ULE) with force controllable, impact resistance, and back drivability is designed to ensure the safety of the subject during Human-Robot Interaction (HRI) processing. Based on the designed NCA-driven ULE, this paper constructs a Model Predictive Control Scheme (MPCS) for force trajectory tracking, which minimises future tracking errors by solving an optimal control problem with inequality constraints. In addition, an Error-Accumulation Improved Newton Algorithm (EAINA) is proposed to solve the MPCS for suppressing various noises and external disturbances. The proposed EAINA is theoretically proved to have small steady state for noise conditions and stability of the EAINA using Lyapunov method. Finally, experimental results verify that the proposed MPCS solved by the EAINA in the NCA-driven ULE achieves robustness, fast convergence, strong tolerance and stability for trajectory rehabilitation task.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.