OPT-IQA: Automated camera parameters tuning framework with IQA-guided optimization

Jan-Henner Roberg, Vladyslav Mosiichuk, Ricardo Silva, Luís Rosado
{"title":"OPT-IQA: Automated camera parameters tuning framework with IQA-guided optimization","authors":"Jan-Henner Roberg,&nbsp;Vladyslav Mosiichuk,&nbsp;Ricardo Silva,&nbsp;Luís Rosado","doi":"10.1016/j.iswa.2025.200520","DOIUrl":null,"url":null,"abstract":"<div><div>In industrial visual inspection, computer vision-based AI systems play a pivotal role, with performances dependent on the quality of the acquired images and changes in environmental conditions. Modern cameras adapt to these varying environments by allowing the tuning of a wide range of camera parameters that significantly change the characteristics of the acquired images. While some parameters are already automatically adjusted in most cameras (e.g., exposure, focus, white balance), others are static and remain at their default values (e.g., brightness, contrast, color-saturation, sharpness). Adaptably adjusting these non-automatic (NAUTO) parameters significantly influences both image quality and the performance of automated visual inspection systems. This work introduces OPT-IQA, a novel framework to automate NAUTO parameter tuning. The proposed approach is based on an optimization process guided by Image Quality Assessment (IQA) metrics that measure human-understandable image quality characteristics, thus enhancing the interpretability of the parameters’ selection process. The framework is built modularly, including a Camera Abstraction Layer to ensure its camera-agnostic nature and a Region-of-Interest Selection Module to select the target region of the inspected object. It also facilitates the seamless integration of supplementary IQA metrics and optimization algorithms to support additional use cases. By using an IQA-guided optimization process based on a reference image, our results show that OPT-IQA alleviates the burden of manually adjusting NAUTO parameters in response to varying illumination conditions, whether caused by shifts in natural elements (e.g., weather) or human-induced changes (e.g., reconfiguration of assembly lines).</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"26 ","pages":"Article 200520"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In industrial visual inspection, computer vision-based AI systems play a pivotal role, with performances dependent on the quality of the acquired images and changes in environmental conditions. Modern cameras adapt to these varying environments by allowing the tuning of a wide range of camera parameters that significantly change the characteristics of the acquired images. While some parameters are already automatically adjusted in most cameras (e.g., exposure, focus, white balance), others are static and remain at their default values (e.g., brightness, contrast, color-saturation, sharpness). Adaptably adjusting these non-automatic (NAUTO) parameters significantly influences both image quality and the performance of automated visual inspection systems. This work introduces OPT-IQA, a novel framework to automate NAUTO parameter tuning. The proposed approach is based on an optimization process guided by Image Quality Assessment (IQA) metrics that measure human-understandable image quality characteristics, thus enhancing the interpretability of the parameters’ selection process. The framework is built modularly, including a Camera Abstraction Layer to ensure its camera-agnostic nature and a Region-of-Interest Selection Module to select the target region of the inspected object. It also facilitates the seamless integration of supplementary IQA metrics and optimization algorithms to support additional use cases. By using an IQA-guided optimization process based on a reference image, our results show that OPT-IQA alleviates the burden of manually adjusting NAUTO parameters in response to varying illumination conditions, whether caused by shifts in natural elements (e.g., weather) or human-induced changes (e.g., reconfiguration of assembly lines).

Abstract Image

OPT-IQA:自动相机参数调整框架与iqa指导的优化
在工业视觉检测中,基于计算机视觉的人工智能系统发挥着关键作用,其性能取决于所获取图像的质量和环境条件的变化。现代相机适应这些变化的环境,允许调整范围广泛的相机参数,显著改变所获取的图像的特征。虽然有些参数在大多数相机中已经自动调整(例如,曝光,对焦,白平衡),但其他参数是静态的,并保持其默认值(例如,亮度,对比度,色彩饱和度,清晰度)。自适应地调整这些非自动(NAUTO)参数对自动视觉检测系统的图像质量和性能都有重要影响。本文介绍了一种新的NAUTO参数自动调优框架——OPT-IQA。该方法基于图像质量评估(IQA)指标指导的优化过程,该指标衡量人类可理解的图像质量特征,从而增强参数选择过程的可解释性。该框架是模块化构建的,包括相机抽象层(Camera Abstraction Layer)和兴趣区域选择模块(region -of- interest Selection Module)。它还促进了补充IQA度量和优化算法的无缝集成,以支持其他用例。通过使用基于参考图像的iqa指导优化过程,我们的研究结果表明,OPT-IQA减轻了人工调整NAUTO参数以响应不同照明条件的负担,无论是由自然因素(如天气)的变化还是人为变化(如装配线的重新配置)引起的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信