Theoretical analysis of a finite-volume scheme for a stochastic Allen–Cahn problem with constraint

IF 1.3 2区 数学 Q1 MATHEMATICS
Caroline Bauzet , Cédric Sultan , Guy Vallet , Aleksandra Zimmermann
{"title":"Theoretical analysis of a finite-volume scheme for a stochastic Allen–Cahn problem with constraint","authors":"Caroline Bauzet ,&nbsp;Cédric Sultan ,&nbsp;Guy Vallet ,&nbsp;Aleksandra Zimmermann","doi":"10.1016/j.na.2025.113812","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this contribution is to address the convergence study of a time and space approximation scheme for an Allen–Cahn problem with constraint and perturbed by a multiplicative noise of Itô type. The problem is set in a bounded domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (with <span><math><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math></span> or 3) and homogeneous Neumann boundary conditions are considered. The employed strategy consists in building a numerical scheme on a regularized version “à la Moreau-Yosida” of the constrained problem, and passing to the limit simultaneously with respect to the regularization parameter and the time and space steps, denoted respectively by <span><math><mi>ϵ</mi></math></span>, <span><math><mrow><mi>Δ</mi><mi>t</mi></mrow></math></span> and <span><math><mi>h</mi></math></span>. Combining a semi-implicit Euler–Maruyama time discretization with a Two-Point Flux Approximation (TPFA) scheme for the spatial variable, one is able to prove, under the assumption <span><math><mrow><mi>Δ</mi><mi>t</mi><mo>=</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn><mo>+</mo><mi>θ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for a positive <span><math><mi>θ</mi></math></span>, the convergence of such a “<span><math><mrow><mo>(</mo><mi>ϵ</mi><mo>,</mo><mi>Δ</mi><mi>t</mi><mo>,</mo><mi>h</mi><mo>)</mo></mrow></math></span>” scheme towards the unique weak solution of the initial problem, <em>a priori</em> strongly in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Λ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <em>a posteriori</em> also strongly in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>×</mo><mi>Λ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> for any finite <span><math><mrow><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"259 ","pages":"Article 113812"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000665","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this contribution is to address the convergence study of a time and space approximation scheme for an Allen–Cahn problem with constraint and perturbed by a multiplicative noise of Itô type. The problem is set in a bounded domain of Rd (with d=2 or 3) and homogeneous Neumann boundary conditions are considered. The employed strategy consists in building a numerical scheme on a regularized version “à la Moreau-Yosida” of the constrained problem, and passing to the limit simultaneously with respect to the regularization parameter and the time and space steps, denoted respectively by ϵ, Δt and h. Combining a semi-implicit Euler–Maruyama time discretization with a Two-Point Flux Approximation (TPFA) scheme for the spatial variable, one is able to prove, under the assumption Δt=O(ϵ2+θ) for a positive θ, the convergence of such a “(ϵ,Δt,h)” scheme towards the unique weak solution of the initial problem, a priori strongly in L2(Ω;L2(0,T;L2(Λ))) and a posteriori also strongly in Lp(0,T;L2(Ω×Λ)) for any finite p1.
带约束的随机Allen-Cahn问题有限体积格式的理论分析
本贡献的目的是解决具有约束且受Itô型乘性噪声干扰的Allen-Cahn问题的时间和空间近似方案的收敛性研究。问题被设置在有界域Rd (d=2或3)上,并考虑齐次Neumann边界条件。所采用的策略是在约束问题的正则化版本“ la Moreau-Yosida”上建立一个数值格式,并同时通过正则化参数和时间和空间步长达到极限,分别用λ, Δt和h表示。将空间变量的半隐式Euler-Maruyama时间离散化与两点流量近似(TPFA)格式相结合,可以证明,在假设Δt=O(ϵ2+θ)下,对于正θ,对于任意有限p≥1,这种“(Λ,Δt,h)”方案收敛于初始问题的唯一弱解,在L2(Ω;L2(0,T;L2(Λ))中先验强,在Lp(0,T;L2(Ω×Λ))中后验强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信