Yu Xin , Jinhua Sheng , Qiao Zhang , Yan Song , Luyun Wang , Ze Yang
{"title":"A novel diagnosis method utilizing MDBO-SVM and imaging genetics for Alzheimer's disease","authors":"Yu Xin , Jinhua Sheng , Qiao Zhang , Yan Song , Luyun Wang , Ze Yang","doi":"10.1016/j.compmedimag.2025.102542","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) is the most common neurodegenerative disorder, yet its underlying mechanisms remain elusive. Early and accurate diagnosis is crucial for timely intervention and disease management. In this paper, a multi-strategy improved dung beetle optimizer (MDBO) was proposed to establish a new framework for AD diagnosis. The unique aspect of this algorithm lies in its integration of the Osprey Optimization Algorithm, Lévy flight, and adaptive t-distribution. This combination endows MDBO with superior global search capabilities and the ability to avoid local optima. Then, we presented a novel fitness function for integrating imaging genetics data. In experiments, MDBO demonstrated outstanding performance on the CEC2017 benchmark functions, proving its effectiveness in optimization problems. Furthermore, it was used to classify individuals with AD, mild cognitive impairment (MCI), and control normal (CN) using limited features. In the multi-classification of CN, MCI, and AD, the algorithm achieved excellent results, with an average accuracy of 81.7 % and a best accuracy of 92 %. Overall, the proposed MDBO algorithm provides a more comprehensive and efficient diagnostic tool, offering new possibilities for early intervention and disease progression control.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102542"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000515","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, yet its underlying mechanisms remain elusive. Early and accurate diagnosis is crucial for timely intervention and disease management. In this paper, a multi-strategy improved dung beetle optimizer (MDBO) was proposed to establish a new framework for AD diagnosis. The unique aspect of this algorithm lies in its integration of the Osprey Optimization Algorithm, Lévy flight, and adaptive t-distribution. This combination endows MDBO with superior global search capabilities and the ability to avoid local optima. Then, we presented a novel fitness function for integrating imaging genetics data. In experiments, MDBO demonstrated outstanding performance on the CEC2017 benchmark functions, proving its effectiveness in optimization problems. Furthermore, it was used to classify individuals with AD, mild cognitive impairment (MCI), and control normal (CN) using limited features. In the multi-classification of CN, MCI, and AD, the algorithm achieved excellent results, with an average accuracy of 81.7 % and a best accuracy of 92 %. Overall, the proposed MDBO algorithm provides a more comprehensive and efficient diagnostic tool, offering new possibilities for early intervention and disease progression control.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.