Josef Sedlak , Jan Zouhar , Zdenek Pokorny , Jan Robl , Stepan Kolomy , Marek Pagac , Karel Kouril
{"title":"Effect of heat treatment and hot isostatic pressing on the structure and mechanical properties of Inconel 939 manufactured via casting and LPBF","authors":"Josef Sedlak , Jan Zouhar , Zdenek Pokorny , Jan Robl , Stepan Kolomy , Marek Pagac , Karel Kouril","doi":"10.1016/j.jmapro.2025.04.082","DOIUrl":null,"url":null,"abstract":"<div><div>The powder bed fusion method is one of the metal additive technologies, which can be used for the fabrication of difficult-to-process materials, such as cobalt and nickel superalloys. Inconel 939 is an example of a nickel superalloy widely used in constructions subjected to high temperatures such as industrial gas turbines. The current paper studies the effect of heat treatment and Hot Isostatic Pressing (HIP) on the structure and mechanical properties of additively manufactured (AM) Inconel 939. Mechanical properties i.e., tensile yield strength, ultimate tensile strength, and creep resistance were observed after the heat treatment (comprised of annealing and subsequent aging), HIP, and compared to the conventionally casted material. HIP post-process caused an increase of 5.73 % and 3.81 % in ultimate tensile strength at the room temperature as well as at the elevated temperature. A detailed analysis of the microstructure of AM and casting samples via light and electron microscopy was performed. The maximum grain sizes in AM samples were similar (122.9 μm and 127.2 μm in the axis and periphery, respectively), while the grain size in casting samples exhibited a mean equivalent circle diameter of 440 μm in the axial region and 398 μm in the vicinity of the peripheral region.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"145 ","pages":"Pages 556-570"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152661252500502X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The powder bed fusion method is one of the metal additive technologies, which can be used for the fabrication of difficult-to-process materials, such as cobalt and nickel superalloys. Inconel 939 is an example of a nickel superalloy widely used in constructions subjected to high temperatures such as industrial gas turbines. The current paper studies the effect of heat treatment and Hot Isostatic Pressing (HIP) on the structure and mechanical properties of additively manufactured (AM) Inconel 939. Mechanical properties i.e., tensile yield strength, ultimate tensile strength, and creep resistance were observed after the heat treatment (comprised of annealing and subsequent aging), HIP, and compared to the conventionally casted material. HIP post-process caused an increase of 5.73 % and 3.81 % in ultimate tensile strength at the room temperature as well as at the elevated temperature. A detailed analysis of the microstructure of AM and casting samples via light and electron microscopy was performed. The maximum grain sizes in AM samples were similar (122.9 μm and 127.2 μm in the axis and periphery, respectively), while the grain size in casting samples exhibited a mean equivalent circle diameter of 440 μm in the axial region and 398 μm in the vicinity of the peripheral region.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.