Design and comparison of PI and boundary-based predictive controller for control of aeration in activated sludge bioreactor – Simulation and laboratory research

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Tomasz Ujazdowski , Robert Piotrowski , Witold Nocoń , Krzysztof Stebel , Jakub Pośpiech
{"title":"Design and comparison of PI and boundary-based predictive controller for control of aeration in activated sludge bioreactor – Simulation and laboratory research","authors":"Tomasz Ujazdowski ,&nbsp;Robert Piotrowski ,&nbsp;Witold Nocoń ,&nbsp;Krzysztof Stebel ,&nbsp;Jakub Pośpiech","doi":"10.1016/j.jprocont.2025.103446","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a classical PI and an on/off predictive boundary-based predictive controller (BBPC) algorithms are compared and verified using an ASM3-based model of an activated sludge system with a reactor and secondary settler. A laboratory-scale activated sludge setup is modelled in MATLAB/Simulink and verified using experimental data. BBPC and PI algorithms are compared in two scenarios of batch and continuous operation of the activated sludge process. To accommodate the on/off nature of the actuator, a pulse-width modulation (PWM) module is added to the PI controller, but a modification in the computation of control error is still needed for the PI to control the process properly. The BBPC, on the other hand, while its implementation is complex, proves to be superior in its ability to limit the control costs, the number of switching of the actuator and most importantly, in its ability to instantaneously compensate for the changes in process load.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"151 ","pages":"Article 103446"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425000745","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a classical PI and an on/off predictive boundary-based predictive controller (BBPC) algorithms are compared and verified using an ASM3-based model of an activated sludge system with a reactor and secondary settler. A laboratory-scale activated sludge setup is modelled in MATLAB/Simulink and verified using experimental data. BBPC and PI algorithms are compared in two scenarios of batch and continuous operation of the activated sludge process. To accommodate the on/off nature of the actuator, a pulse-width modulation (PWM) module is added to the PI controller, but a modification in the computation of control error is still needed for the PI to control the process properly. The BBPC, on the other hand, while its implementation is complex, proves to be superior in its ability to limit the control costs, the number of switching of the actuator and most importantly, in its ability to instantaneously compensate for the changes in process load.
PI与基于边界的预测控制器在活性污泥反应器曝气控制中的设计与比较——仿真与实验室研究
在本文中,使用基于asm3的活性污泥系统模型,对经典PI和基于开/关预测边界的预测控制器(BBPC)算法进行了比较和验证。在MATLAB/Simulink中对实验室规模的活性污泥装置进行了建模,并用实验数据进行了验证。对BBPC算法和PI算法在活性污泥工艺间歇运行和连续运行两种情况下进行了比较。为了适应执行器的开/关特性,在PI控制器中添加了一个脉宽调制(PWM)模块,但是仍然需要修改控制误差的计算,以便PI正确控制过程。另一方面,尽管BBPC的实现很复杂,但它在限制控制成本、执行器开关数量以及最重要的是,即时补偿过程负载变化的能力方面被证明是优越的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信