{"title":"Metric spaces in choiceless set theory","authors":"Eleftherios Tachtsis","doi":"10.1016/j.apal.2025.103603","DOIUrl":null,"url":null,"abstract":"<div><div>We <em>answer open questions</em> from Keremedis (2016) <span><span>[12]</span></span> and Keremedis and Tachtsis (2022) <span><span>[16]</span></span>, and <em>properly strengthen some results</em> from the above papers as well as from Keremedis et al. (2023) <span><span>[19]</span></span>. In particular, and among other results, we establish the following:<ul><li><span>1.</span><span><div>The Boolean Prime Ideal Theorem does not imply “For every sequentially compact metric space <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>〉</mo></math></span>, <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>” in <strong>ZF</strong> (Zermelo–Fraenkel set theory without the Axiom of Choice (<strong>AC</strong>)).</div></span></li><li><span>2.</span><span><div>“Every linearly ordered set can be well ordered” ∧ “The union of a well-orderable family of well-orderable sets is well orderable” ∧ “For every uncountable sequentially compact metric space <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>〉</mo></math></span>, <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>” does not imply the Axiom of Countable Choice in <strong>ZFA</strong> (<strong>ZF</strong> with atoms).</div></span></li><li><span>3.</span><span><div>“For every uncountable compact metric space <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>〉</mo></math></span>, <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>” does not imply “For every uncountable sequentially compact metric space <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>〉</mo></math></span>, <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>” in <strong>ZFA</strong>”.</div></span></li><li><span>4.</span><span><div>“For every uncountable sequentially compact metric space <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>〉</mo></math></span> <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>” does not imply “For every uncountable compact metric space <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>〉</mo></math></span>, <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>” in <strong>ZFA</strong>.</div></span></li><li><span>5.</span><span><div>“For every uncountable sequentially compact metric space <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>〉</mo></math></span> <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>” does not imply the Axiom of Countable Multiple Choice for countable sets (<span><math><msub><mrow><mi>CMC</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>) in <strong>ZFA</strong>.</div></span></li><li><span>6.</span><span><div>“Every linearly ordered set can be well ordered” does not imply “Every infinite compact metric space has an infinite scattered subspace” ∨ “Axiom of Countable Choice for finite sets” in <strong>ZFA</strong>.</div></span></li></ul></div><div>We also address the open problem of the deductive strength of Stone's Theorem “Every metric space is paracompact” (<strong>ST</strong>) and provide a <em>non-trivial partial answer to the open question</em> whether <strong>ST</strong> implies <span><math><msub><mrow><mi>CMC</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>. In particular, we show that the formally weaker statement “For every metric space <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>〉</mo></math></span>, <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span> or <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>〉</mo></math></span> is paracompact” does not imply <span><math><msub><mrow><mi>CMC</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> in <strong>ZFA</strong>. We also show that, for every uncountable regular cardinal <em>κ</em>, the above formally weaker form of <strong>ST</strong> is not implied by “For all infinite well-ordered cardinals <span><math><mi>λ</mi><mo><</mo><mi>κ</mi></math></span>, the Principle of Dependent Choices for <em>λ</em> holds” in <strong>ZF</strong>.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 9","pages":"Article 103603"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000521","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
We answer open questions from Keremedis (2016) [12] and Keremedis and Tachtsis (2022) [16], and properly strengthen some results from the above papers as well as from Keremedis et al. (2023) [19]. In particular, and among other results, we establish the following:
1.
The Boolean Prime Ideal Theorem does not imply “For every sequentially compact metric space , ” in ZF (Zermelo–Fraenkel set theory without the Axiom of Choice (AC)).
2.
“Every linearly ordered set can be well ordered” ∧ “The union of a well-orderable family of well-orderable sets is well orderable” ∧ “For every uncountable sequentially compact metric space , ” does not imply the Axiom of Countable Choice in ZFA (ZF with atoms).
3.
“For every uncountable compact metric space , ” does not imply “For every uncountable sequentially compact metric space , ” in ZFA”.
4.
“For every uncountable sequentially compact metric space ” does not imply “For every uncountable compact metric space , ” in ZFA.
5.
“For every uncountable sequentially compact metric space ” does not imply the Axiom of Countable Multiple Choice for countable sets () in ZFA.
6.
“Every linearly ordered set can be well ordered” does not imply “Every infinite compact metric space has an infinite scattered subspace” ∨ “Axiom of Countable Choice for finite sets” in ZFA.
We also address the open problem of the deductive strength of Stone's Theorem “Every metric space is paracompact” (ST) and provide a non-trivial partial answer to the open question whether ST implies . In particular, we show that the formally weaker statement “For every metric space , or is paracompact” does not imply in ZFA. We also show that, for every uncountable regular cardinal κ, the above formally weaker form of ST is not implied by “For all infinite well-ordered cardinals , the Principle of Dependent Choices for λ holds” in ZF.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.