A novel surrogate model with deep learning for predicting spacial-temporal pressure in coalbed methane reservoirs

IF 4.2 3区 工程技术 Q2 ENERGY & FUELS
Yukun Dong , Xiaodong Zhang , Jiyuan Zhang , Kuankuan Wu , Shuaiwei Liu
{"title":"A novel surrogate model with deep learning for predicting spacial-temporal pressure in coalbed methane reservoirs","authors":"Yukun Dong ,&nbsp;Xiaodong Zhang ,&nbsp;Jiyuan Zhang ,&nbsp;Kuankuan Wu ,&nbsp;Shuaiwei Liu","doi":"10.1016/j.ngib.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>Coalbed methane (CBM) is a vital unconventional energy resource, and predicting its spatiotemporal pressure dynamics is crucial for efficient development strategies. This paper proposes a novel deep learning–based data-driven surrogate model, AxialViT-ConvLSTM, which integrates AxialAttention Vision Transformer, ConvLSTM, and an enhanced loss function to predict pressure dynamics in CBM reservoirs. The results showed that the model achieves a mean square error of 0.003, a learned perceptual image patch similarity of 0.037, a structural similarity of 0.979, and an R<sup>2</sup> of 0.982 between predictions and actual pressures, indicating excellent performance. The model also demonstrates strong robustness and accuracy in capturing spatial–temporal pressure features.</div></div>","PeriodicalId":37116,"journal":{"name":"Natural Gas Industry B","volume":"12 2","pages":"Pages 219-233"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Gas Industry B","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352854025000233","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Coalbed methane (CBM) is a vital unconventional energy resource, and predicting its spatiotemporal pressure dynamics is crucial for efficient development strategies. This paper proposes a novel deep learning–based data-driven surrogate model, AxialViT-ConvLSTM, which integrates AxialAttention Vision Transformer, ConvLSTM, and an enhanced loss function to predict pressure dynamics in CBM reservoirs. The results showed that the model achieves a mean square error of 0.003, a learned perceptual image patch similarity of 0.037, a structural similarity of 0.979, and an R2 of 0.982 between predictions and actual pressures, indicating excellent performance. The model also demonstrates strong robustness and accuracy in capturing spatial–temporal pressure features.
基于深度学习的煤层气储层时空压力预测代理模型
煤层气是一种重要的非常规能源,煤层气时空压力动态预测是制定有效开发战略的关键。本文提出了一种新的基于深度学习的数据驱动代理模型axialviti -ConvLSTM,该模型集成了AxialAttention Vision Transformer、ConvLSTM和增强损失函数,用于预测煤层气储层的压力动态。结果表明,该模型的均方误差为0.003,学习到的感知图像斑块相似度为0.037,结构相似度为0.979,预测与实际压力的R2为0.982,表现出良好的性能。该模型在捕获时空压力特征方面具有较强的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Gas Industry B
Natural Gas Industry B Earth and Planetary Sciences-Geology
CiteScore
5.80
自引率
6.10%
发文量
46
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信