Mineral identification in thin sections using a lightweight and attention mechanism

IF 4.2 3区 工程技术 Q2 ENERGY & FUELS
Xin Zhang , Wei Dang , Jun Liu , Zijuan Yin , Guichao Du , Yawen He , Yankai Xue
{"title":"Mineral identification in thin sections using a lightweight and attention mechanism","authors":"Xin Zhang ,&nbsp;Wei Dang ,&nbsp;Jun Liu ,&nbsp;Zijuan Yin ,&nbsp;Guichao Du ,&nbsp;Yawen He ,&nbsp;Yankai Xue","doi":"10.1016/j.ngib.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>Mineral identification is foundational to geological survey research, mineral resource exploration, and mining engineering. Considering the diversity of mineral types and the challenge of achieving high recognition accuracy for similar features, this study introduces a mineral detection method based on YOLOv8-SBI. This work enhances feature extraction by integrating spatial pyramid pooling-fast (SPPF) with the simplified self-attention module (SimAM), significantly improving the precision of mineral feature detection. In the feature fusion network, a weighted bidirectional feature pyramid network is employed for advanced cross-channel feature integration, effectively reducing feature redundancy. Additionally, Inner-Intersection Over Union (InnerIOU) is used as the loss function to improve the average quality localization performance of anchor boxes. Experimental results show that the YOLOv8-SBI model achieves an accuracy of 67.9 %, a recall of 74.3 %, a [email protected] of 75.8 %, and a [email protected]:0.95 of 56.7 %, with a real-time detection speed of 244.2 frames per second. Compared to YOLOv8, YOLOv8-SBI demonstrates a significant improvement with 15.4 % increase in accuracy, 28.5 % increase in recall, and increases of 28.1 % and 20.9 % in [email protected] and [email protected]:0.95, respectively. Furthermore, relative to other models, such as YOLOv3, YOLOv5, YOLOv6, YOLOv8, YOLOv9, and YOLOv10, YOLOv8-SBI has a smaller parameter size of only 3.01 × 10<sup>6</sup>. This highlights the optimal balance between detection accuracy and speed, thereby offering robust technical support for intelligent mineral classification.</div></div>","PeriodicalId":37116,"journal":{"name":"Natural Gas Industry B","volume":"12 2","pages":"Pages 135-146"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Gas Industry B","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352854025000166","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Mineral identification is foundational to geological survey research, mineral resource exploration, and mining engineering. Considering the diversity of mineral types and the challenge of achieving high recognition accuracy for similar features, this study introduces a mineral detection method based on YOLOv8-SBI. This work enhances feature extraction by integrating spatial pyramid pooling-fast (SPPF) with the simplified self-attention module (SimAM), significantly improving the precision of mineral feature detection. In the feature fusion network, a weighted bidirectional feature pyramid network is employed for advanced cross-channel feature integration, effectively reducing feature redundancy. Additionally, Inner-Intersection Over Union (InnerIOU) is used as the loss function to improve the average quality localization performance of anchor boxes. Experimental results show that the YOLOv8-SBI model achieves an accuracy of 67.9 %, a recall of 74.3 %, a [email protected] of 75.8 %, and a [email protected]:0.95 of 56.7 %, with a real-time detection speed of 244.2 frames per second. Compared to YOLOv8, YOLOv8-SBI demonstrates a significant improvement with 15.4 % increase in accuracy, 28.5 % increase in recall, and increases of 28.1 % and 20.9 % in [email protected] and [email protected]:0.95, respectively. Furthermore, relative to other models, such as YOLOv3, YOLOv5, YOLOv6, YOLOv8, YOLOv9, and YOLOv10, YOLOv8-SBI has a smaller parameter size of only 3.01 × 106. This highlights the optimal balance between detection accuracy and speed, thereby offering robust technical support for intelligent mineral classification.
利用轻量级和注意力机制在薄片中识别矿物
矿产识别是地质调查研究、矿产资源勘查和采矿工程的基础。考虑到矿物类型的多样性以及对相似特征实现高识别精度的挑战,本研究引入了一种基于YOLOv8-SBI的矿物检测方法。通过将空间金字塔池快速(SPPF)与简化的自关注模块(SimAM)相结合,增强特征提取,显著提高了矿物特征检测的精度。在特征融合网络中,采用加权双向特征金字塔网络进行高级跨通道特征融合,有效降低了特征冗余。此外,利用内交联(InnerIOU)作为损失函数,提高锚盒的平均质量定位性能。实验结果表明,YOLOv8-SBI模型的准确率为67.9%,召回率为74.3%,[email protected]为75.8%,[email protected]为0.95(56.7%),实时检测速度为244.2帧/秒。与YOLOv8相比,YOLOv8- sbi的准确率提高了15.4%,召回率提高了28.5%,[email protected]和[email protected]的准确率分别提高了28.1%和20.9%:0.95。此外,与YOLOv3、YOLOv5、YOLOv6、YOLOv8、YOLOv9、YOLOv10等型号相比,YOLOv8- sbi的参数尺寸更小,仅为3.01 × 106。这突出了检测精度和速度之间的最佳平衡,从而为智能矿物分类提供了强大的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Gas Industry B
Natural Gas Industry B Earth and Planetary Sciences-Geology
CiteScore
5.80
自引率
6.10%
发文量
46
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信