Xingyu Zhou , Liming Zhang , Ji Qi , Yanxing Wang , Kai Zhang , Ruijia Zhang , Yaqi Sun
{"title":"Integrated wellbore-surface pressure control production optimization for shale gas wells","authors":"Xingyu Zhou , Liming Zhang , Ji Qi , Yanxing Wang , Kai Zhang , Ruijia Zhang , Yaqi Sun","doi":"10.1016/j.ngib.2025.03.011","DOIUrl":null,"url":null,"abstract":"<div><div>Shale gas wells often face challenges in maintaining continuous and stable production due to their coexistence with high- and low-pressure wells within the same development block, which leads to issues involving mixed-pressure flows. Traditional pipeline optimization methods used in conventional gas well blocks fail to address the unique needs of shale gas wells, such as the precise planning of airflow paths, pressure distribution, and compression. This study proposes a pressure-controlled production optimization strategy specifically designed for shale gas wells operating under mixed-pressure flow conditions. The strategy aims to improve production stability and optimize system efficiency. The decline in production and pressure for individual wells over time is forecasted using a predictive model that accounts for key factors of system optimization, such as reservoir depletion, wellbore conditions, and equipment performance. Additionally, the model predicts the timing and impact of liquid loading, which can significantly affect production. The optimization process involves analyzing the existing gathering pipeline network to determine the most efficient flow directions and compression strategies based on these predictions, while the strategy involves adjusting compressor settings, optimizing flow rates, and planning pressure distribution across the network to maximize productivity while maintaining system stability. By implementing these strategies, this study significantly improves gas well productivity and enhances the adaptability and efficiency of the gathering and transportation system. The proposed approach provides systematic technical solutions and practical guidance for the efficient development and stable production of shale gas fields, ensuring more robust and sustainable pipeline operations.</div></div>","PeriodicalId":37116,"journal":{"name":"Natural Gas Industry B","volume":"12 2","pages":"Pages 123-134"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Gas Industry B","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352854025000269","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Shale gas wells often face challenges in maintaining continuous and stable production due to their coexistence with high- and low-pressure wells within the same development block, which leads to issues involving mixed-pressure flows. Traditional pipeline optimization methods used in conventional gas well blocks fail to address the unique needs of shale gas wells, such as the precise planning of airflow paths, pressure distribution, and compression. This study proposes a pressure-controlled production optimization strategy specifically designed for shale gas wells operating under mixed-pressure flow conditions. The strategy aims to improve production stability and optimize system efficiency. The decline in production and pressure for individual wells over time is forecasted using a predictive model that accounts for key factors of system optimization, such as reservoir depletion, wellbore conditions, and equipment performance. Additionally, the model predicts the timing and impact of liquid loading, which can significantly affect production. The optimization process involves analyzing the existing gathering pipeline network to determine the most efficient flow directions and compression strategies based on these predictions, while the strategy involves adjusting compressor settings, optimizing flow rates, and planning pressure distribution across the network to maximize productivity while maintaining system stability. By implementing these strategies, this study significantly improves gas well productivity and enhances the adaptability and efficiency of the gathering and transportation system. The proposed approach provides systematic technical solutions and practical guidance for the efficient development and stable production of shale gas fields, ensuring more robust and sustainable pipeline operations.