Lian Huang , Fu Zeng , Hui Wei , Tong Su , Yuwen Su , Yarong Lin , Qi Niu , Qi Xu
{"title":"SOAT1 dysregulation in astrocytes drives Blood–Brain barrier dysfunction and neuroinflammation in Alzheimer’s disease","authors":"Lian Huang , Fu Zeng , Hui Wei , Tong Su , Yuwen Su , Yarong Lin , Qi Niu , Qi Xu","doi":"10.1016/j.bbi.2025.04.032","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to memory loss and cognitive decline, in which blood–brain barrier (BBB) and astrocyte dysfunction are significantly involved. Recent evidence suggests that dysregulation of lipid metabolism in astrocytes contributes to BBB disruption and neuroinflammation in AD. Sterol O-acyltransferase 1 (SOAT1), an enzyme involved in cholesterol esterification, has been implicated in BBB disruption and neuroinflammation, but its specific role in AD remains unclear. This study aimed to investigate the impact of SOAT1 on lipid metabolism, BBB integrity, and neuroinflammation in AD. Using Oil Red O staining of human autopsy brain tissue and reanalysis of publicly available single-nucleus RNA sequencing (snRNA-seq) data, we identified a significant increase in lipid droplet accumulation and lipid metabolism gene expression, particularly in astrocytes, in the brains of AD patients. Furthermore, in vitro BBB models and the 5 × FAD mouse model were used to explore how SOAT1 expression influences BBB function. Our results demonstrated that elevated SOAT1 expression in astrocytes was positively correlated with increased lipid droplet accumulation and compromised BBB integrity. Knockdown of SOAT1 using siRNA or treatment with the SOAT1 inhibitor K604 restored BBB function, reduced neuroinflammation, and improved cognitive function in 5 × FAD mice. These findings suggest that SOAT1 plays a critical role in astrocytic lipid metabolism and BBB dysfunction in AD. Targeting SOAT1 may be a promising therapeutic approach to alleviate neuroinflammation and restore cognitive function in AD patients.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"128 ","pages":"Pages 497-509"},"PeriodicalIF":8.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125001709","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to memory loss and cognitive decline, in which blood–brain barrier (BBB) and astrocyte dysfunction are significantly involved. Recent evidence suggests that dysregulation of lipid metabolism in astrocytes contributes to BBB disruption and neuroinflammation in AD. Sterol O-acyltransferase 1 (SOAT1), an enzyme involved in cholesterol esterification, has been implicated in BBB disruption and neuroinflammation, but its specific role in AD remains unclear. This study aimed to investigate the impact of SOAT1 on lipid metabolism, BBB integrity, and neuroinflammation in AD. Using Oil Red O staining of human autopsy brain tissue and reanalysis of publicly available single-nucleus RNA sequencing (snRNA-seq) data, we identified a significant increase in lipid droplet accumulation and lipid metabolism gene expression, particularly in astrocytes, in the brains of AD patients. Furthermore, in vitro BBB models and the 5 × FAD mouse model were used to explore how SOAT1 expression influences BBB function. Our results demonstrated that elevated SOAT1 expression in astrocytes was positively correlated with increased lipid droplet accumulation and compromised BBB integrity. Knockdown of SOAT1 using siRNA or treatment with the SOAT1 inhibitor K604 restored BBB function, reduced neuroinflammation, and improved cognitive function in 5 × FAD mice. These findings suggest that SOAT1 plays a critical role in astrocytic lipid metabolism and BBB dysfunction in AD. Targeting SOAT1 may be a promising therapeutic approach to alleviate neuroinflammation and restore cognitive function in AD patients.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.