A 2D-registration algorithm for the correction of motion-induced misalignments of consecutive image stacks in multi-stack high-resolution peripheral quantitative CT scans
M.S.A.M. Bevers , S. Moharir , F.L. Heyer , C.E. Wyers , J.P. van den Bergh , B. van Rietbergen
{"title":"A 2D-registration algorithm for the correction of motion-induced misalignments of consecutive image stacks in multi-stack high-resolution peripheral quantitative CT scans","authors":"M.S.A.M. Bevers , S. Moharir , F.L. Heyer , C.E. Wyers , J.P. van den Bergh , B. van Rietbergen","doi":"10.1016/j.bone.2025.117490","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-stack imaging using high-resolution peripheral quantitative CT (HR-pQCT) can involve misalignments of consecutive image stacks (‘stack shift’) due to subject movement during scan acquisition. We developed a simple, 2D-registration algorithm for the correction of stack shifts in multi-stack HR-pQCT scans and investigated 1) the differences in standard HR-pQCT parameters and repeatability between before and after stack-shift correction; and 2) the correlation between the transformation needed for the stack-shift correction and corresponding difference in HR-pQCT parameters. The algorithm generates an artificial stack overlap of two slices, then rigidly registers the overlapping region (only in-plane translation allowed), and subsequently applies the resulting translation to the proximal stack. The algorithm was applied to data of 23 men and women with three same-day repeated scans (69 radius and 63 tibia scans, Dataset 1) and of 48 postmenopausal women with 78 radius scans taken at two time points with 12-week interval (Dataset 2). In both datasets, median differences in HR-pQCT parameters between before and after stack-shift correction were mostly significant yet small (≤0.53 %). The differences could vary considerably between subjects and ranged between −12.1 % and +35.8 % for cortical porosity, stiffness, and failure load. For the other HR-pQCT parameters, the differences ranged between ±0.8 % (Dataset 1) and between −4.5 % and +0.9 % (Dataset 2) among subjects. Spearman correlations between the magnitude of the translation and corresponding difference in HR-pQCT parameters were significant for most parameters in both datasets and strongest for stiffness and failure load (ρ = 0.687–0.947; <em>p</em> < 0.01). Based on Dataset 1, coefficients of variation differed between ±0.3 percentage points after stack-shift correction as compared to before. To conclude, correction of stack misalignments in two-stack HR-pQCT scans using our algorithm resulted in significant but negligible median differences in HR-pQCT parameters and precision, but differences could exceed least-significant differences and thereby be clinically relevant in individual subjects. The translation needed for the stack-shift correction correlated significantly with the difference in most HR-pQCT parameters, thereby potentially serving as objective measure for stack-shift severity. The algorithm can be applied directly after scan reconstruction, at low computational cost and without negative effects from image interpolation.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"197 ","pages":"Article 117490"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328225001024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-stack imaging using high-resolution peripheral quantitative CT (HR-pQCT) can involve misalignments of consecutive image stacks (‘stack shift’) due to subject movement during scan acquisition. We developed a simple, 2D-registration algorithm for the correction of stack shifts in multi-stack HR-pQCT scans and investigated 1) the differences in standard HR-pQCT parameters and repeatability between before and after stack-shift correction; and 2) the correlation between the transformation needed for the stack-shift correction and corresponding difference in HR-pQCT parameters. The algorithm generates an artificial stack overlap of two slices, then rigidly registers the overlapping region (only in-plane translation allowed), and subsequently applies the resulting translation to the proximal stack. The algorithm was applied to data of 23 men and women with three same-day repeated scans (69 radius and 63 tibia scans, Dataset 1) and of 48 postmenopausal women with 78 radius scans taken at two time points with 12-week interval (Dataset 2). In both datasets, median differences in HR-pQCT parameters between before and after stack-shift correction were mostly significant yet small (≤0.53 %). The differences could vary considerably between subjects and ranged between −12.1 % and +35.8 % for cortical porosity, stiffness, and failure load. For the other HR-pQCT parameters, the differences ranged between ±0.8 % (Dataset 1) and between −4.5 % and +0.9 % (Dataset 2) among subjects. Spearman correlations between the magnitude of the translation and corresponding difference in HR-pQCT parameters were significant for most parameters in both datasets and strongest for stiffness and failure load (ρ = 0.687–0.947; p < 0.01). Based on Dataset 1, coefficients of variation differed between ±0.3 percentage points after stack-shift correction as compared to before. To conclude, correction of stack misalignments in two-stack HR-pQCT scans using our algorithm resulted in significant but negligible median differences in HR-pQCT parameters and precision, but differences could exceed least-significant differences and thereby be clinically relevant in individual subjects. The translation needed for the stack-shift correction correlated significantly with the difference in most HR-pQCT parameters, thereby potentially serving as objective measure for stack-shift severity. The algorithm can be applied directly after scan reconstruction, at low computational cost and without negative effects from image interpolation.
期刊介绍:
BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.