Yijie Zou, Zhao Chen, Fei Zhao, Ya Yin, Kaixin He, Xingru Liang, Haifeng He, Zhijian Li, Shenghua Liu
{"title":"Tetraphenylethylene or Naphthalimide-Functionalized Dendritic Carbazole AIEgens: Self-Assembly Visualization, Three Disparate Force-Triggered Fluorescence Responses, and Advanced Anticounterfeiting Applications","authors":"Yijie Zou, Zhao Chen, Fei Zhao, Ya Yin, Kaixin He, Xingru Liang, Haifeng He, Zhijian Li, Shenghua Liu","doi":"10.1039/d5qo00393h","DOIUrl":null,"url":null,"abstract":"Three 1,8-naphthalimide-modified donor-π-acceptor type and three tetraphenylethylene-functionalized fluorogenic dendritic carbazole derivatives are designed and synthesized. These six dendrimer-like carbazole-containing compounds are typical aggregation-induced emission (AIE) luminogens. Specially, the AIE-active 3CzB2Nap possessing trimeric carbazole and two 1,8-naphthalimide groups is featured by aggregation-triggered self-assembly, and the visualization of its intriguing self-assembly process is successfully realized through scanning electron microscopy technology. Notably, three types of contrasting anisotropic mechanical force-induced fluorescence responses from the six prepared dendritic carbazole AIEgens are observed. More specifically, 7CzB2TPE and 3CzB2Nap do not exhibit fluorescence changes after grinding; 1CzB2TPE and 3CzB2TPE display irreversible mechanofluorochromic phenomena; 1CzB2Nap and 7CzB2Nap show reversible mechanofluorochromic characteristics. To deeply elucidate their three distinct types of force-responsive emissive features of six dendritic AIEgens, powder and single-crystal X-ray diffraction, differential scanning calorimetry experiments, and theoretical simulation calculations of molecular packing structures before and after grinding are carried out. Based on the observed three disparate force-dependent fluorescence phenomena, two advanced information security systems involving multilevel painting anticounterfeit and multimode information encryption are elaborately constructed.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"19 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qo00393h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Three 1,8-naphthalimide-modified donor-π-acceptor type and three tetraphenylethylene-functionalized fluorogenic dendritic carbazole derivatives are designed and synthesized. These six dendrimer-like carbazole-containing compounds are typical aggregation-induced emission (AIE) luminogens. Specially, the AIE-active 3CzB2Nap possessing trimeric carbazole and two 1,8-naphthalimide groups is featured by aggregation-triggered self-assembly, and the visualization of its intriguing self-assembly process is successfully realized through scanning electron microscopy technology. Notably, three types of contrasting anisotropic mechanical force-induced fluorescence responses from the six prepared dendritic carbazole AIEgens are observed. More specifically, 7CzB2TPE and 3CzB2Nap do not exhibit fluorescence changes after grinding; 1CzB2TPE and 3CzB2TPE display irreversible mechanofluorochromic phenomena; 1CzB2Nap and 7CzB2Nap show reversible mechanofluorochromic characteristics. To deeply elucidate their three distinct types of force-responsive emissive features of six dendritic AIEgens, powder and single-crystal X-ray diffraction, differential scanning calorimetry experiments, and theoretical simulation calculations of molecular packing structures before and after grinding are carried out. Based on the observed three disparate force-dependent fluorescence phenomena, two advanced information security systems involving multilevel painting anticounterfeit and multimode information encryption are elaborately constructed.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.