C. Braggio, L. Balembois, R. Di Vora, Z. Wang, J. Travesedo, L. Pallegoix, G. Carugno, A. Ortolan, G. Ruoso, U. Gambardella, D. D’Agostino, P. Bertet, E. Flurin
{"title":"Quantum-Enhanced Sensing of Axion Dark Matter with a Transmon-Based Single Microwave Photon Counter","authors":"C. Braggio, L. Balembois, R. Di Vora, Z. Wang, J. Travesedo, L. Pallegoix, G. Carugno, A. Ortolan, G. Ruoso, U. Gambardella, D. D’Agostino, P. Bertet, E. Flurin","doi":"10.1103/physrevx.15.021031","DOIUrl":null,"url":null,"abstract":"We report an axion dark matter search with a haloscope equipped with a microwave photon counter. The haloscope is a tunable high quality factor three-dimensional microwave cavity placed in a magnetic field. The photon counter, operated cyclically, maps an incoming microwave photon onto the state of a superconducting transmon qubit. The measurement protocol continuously monitors the power emitted by the haloscope cavity as well as the dark count background and enables tuning of the cavity frequency to probe different axion masses. With this apparatus, we enhance by a factor of 20 the search speed that can be reached with quantum-limited linear amplifiers and set a new standard for probing the existence of axions with resonant detectors above 5 GHz. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"82 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021031","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report an axion dark matter search with a haloscope equipped with a microwave photon counter. The haloscope is a tunable high quality factor three-dimensional microwave cavity placed in a magnetic field. The photon counter, operated cyclically, maps an incoming microwave photon onto the state of a superconducting transmon qubit. The measurement protocol continuously monitors the power emitted by the haloscope cavity as well as the dark count background and enables tuning of the cavity frequency to probe different axion masses. With this apparatus, we enhance by a factor of 20 the search speed that can be reached with quantum-limited linear amplifiers and set a new standard for probing the existence of axions with resonant detectors above 5 GHz. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.