Across-Platform Detection of Malicious Cryptocurrency Accounts via Interaction Feature Learning

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Zheng Che;Meng Shen;Zhehui Tan;Hanbiao Du;Wei Wang;Ting Chen;Qinglin Zhao;Yong Xie;Liehuang Zhu
{"title":"Across-Platform Detection of Malicious Cryptocurrency Accounts via Interaction Feature Learning","authors":"Zheng Che;Meng Shen;Zhehui Tan;Hanbiao Du;Wei Wang;Ting Chen;Qinglin Zhao;Yong Xie;Liehuang Zhu","doi":"10.1109/TIFS.2025.3565130","DOIUrl":null,"url":null,"abstract":"With the rapid evolution of Web3.0, cryptocurrency has become a cornerstone of decentralized finance. While these digital assets enable efficient and borderless financial transactions, their pseudonymous nature has also attracted malicious activities such as money laundering, fraud, and other financial crimes. Effective detection of malicious accounts is crucial to maintaining the security and integrity of the Web 3.0 ecosystem. Existing malicious account detection methods rely on large amounts of labeled data and suffer from low generalization. Label-efficient and generalizable malicious account detection remains a challenging task. In this paper, we propose ShadowEyes, a framework for detecting malicious accounts by leveraging interaction feature learning with only a small labeled dataset. Specifically, We first propose a generalized account representation named TxGraph, which captures the universal interaction features of Ethereum and Bitcoin. Then we carefully design an account representation augmentation method tailored to simulate the evolution of malicious accounts to generate positive pairs. We conduct extensive experiments using public datasets to evaluate the performance of ShadowEyes. The results demonstrate that it outperforms state-of-the-art (SOTA) methods in four typical scenarios. Specifically, in the scenario of across-platform malicious account detection, ShadowEyes maintains an F1 score of around 90%, which is 10% higher than the SOTA method. In the zero-shot learning scenario, it can achieve an F1 score of 79.56% for detecting gambling accounts, surpassing the SOTA method by 10.44%.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"4783-4798"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979464/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid evolution of Web3.0, cryptocurrency has become a cornerstone of decentralized finance. While these digital assets enable efficient and borderless financial transactions, their pseudonymous nature has also attracted malicious activities such as money laundering, fraud, and other financial crimes. Effective detection of malicious accounts is crucial to maintaining the security and integrity of the Web 3.0 ecosystem. Existing malicious account detection methods rely on large amounts of labeled data and suffer from low generalization. Label-efficient and generalizable malicious account detection remains a challenging task. In this paper, we propose ShadowEyes, a framework for detecting malicious accounts by leveraging interaction feature learning with only a small labeled dataset. Specifically, We first propose a generalized account representation named TxGraph, which captures the universal interaction features of Ethereum and Bitcoin. Then we carefully design an account representation augmentation method tailored to simulate the evolution of malicious accounts to generate positive pairs. We conduct extensive experiments using public datasets to evaluate the performance of ShadowEyes. The results demonstrate that it outperforms state-of-the-art (SOTA) methods in four typical scenarios. Specifically, in the scenario of across-platform malicious account detection, ShadowEyes maintains an F1 score of around 90%, which is 10% higher than the SOTA method. In the zero-shot learning scenario, it can achieve an F1 score of 79.56% for detecting gambling accounts, surpassing the SOTA method by 10.44%.
基于交互特征学习的恶意加密货币账户跨平台检测
随着Web3.0的快速发展,加密货币已经成为去中心化金融的基石。虽然这些数字资产能够实现高效和无国界的金融交易,但它们的假名性质也吸引了洗钱、欺诈和其他金融犯罪等恶意活动。有效检测恶意帐户对于维护Web 3.0生态系统的安全性和完整性至关重要。现有的恶意账户检测方法依赖于大量的标记数据,泛化程度较低。标签高效和通用的恶意帐户检测仍然是一项具有挑战性的任务。在本文中,我们提出了shadowweyes,这是一个通过仅使用小标记数据集利用交互特征学习来检测恶意帐户的框架。具体来说,我们首先提出了一个名为TxGraph的通用账户表示,它捕捉了以太坊和比特币的通用交互特征。然后,我们精心设计了一种帐户表示增强方法,以模拟恶意帐户的演变以生成正对。我们使用公共数据集进行了大量的实验来评估shadowweyes的性能。结果表明,在四个典型场景中,它优于最先进的(SOTA)方法。具体来说,在跨平台恶意账户检测场景中,shadowweyes的F1得分保持在90%左右,比SOTA方法高出10%。在零射击学习场景下,检测赌博账户的F1得分达到79.56%,比SOTA方法高出10.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信