Positive feedback: How a synergy between the streaming instability and dust coagulation forms planetesimals

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Daniel Carrera, Jeonghoon Lim, Linn E. J. Eriksson, Wladimir Lyra, Jacob B. Simon
{"title":"Positive feedback: How a synergy between the streaming instability and dust coagulation forms planetesimals","authors":"Daniel Carrera, Jeonghoon Lim, Linn E. J. Eriksson, Wladimir Lyra, Jacob B. Simon","doi":"10.1051/0004-6361/202554100","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> One of the most important open questions in planet formation is how dust grains in a protoplanetary disk manage to overcome growth barriers and form the ∼100 km planet building blocks that we call planetesimals. There appears to be a gap between the largest grains that can be produce by coagulation, and the smallest grains that are needed for the streaming instability (SI) to form planetesimals.<i>Aims.<i/> Here we explore the novel hypothesis that dust coagulation and the SI work in tandem; in other words, they form a feedback loop where each one boosts the action of the other to bridge the gap between dust grains and planetesimals.<i>Methods.<i/> We developed a semi-analytical model of dust concentration due to the SI, and an analytic model of how the SI affects the fragmentation and radial drift barriers. We then combined them to model our proposed feedback loop.<i>Results.<i/> In the fragmentation-limited regime, we find a powerful synergy between the SI and dust growth that drastically increases both grain sizes and densities. We find that a midplane dust-to-gas ratio of <i>ϵ<i/> ≥ 0.3 is a sufficient condition for the feedback loop to reach the planetesimal-forming region for turbulence values 10<sup>−4<sup/> ≤ <i>α<i/> ≤ 10<sup>−3<sup/> and grain sizes 0.01 ≤ St ≤ 0.1. In contrast, the drift-limited regime only shows grain growth without significant dust accumulation. In other words, planetesimal formation remains challenging in the drift-dominated regime and dust traps may be required to allow planet formation at wide orbital distances.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"53 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202554100","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. One of the most important open questions in planet formation is how dust grains in a protoplanetary disk manage to overcome growth barriers and form the ∼100 km planet building blocks that we call planetesimals. There appears to be a gap between the largest grains that can be produce by coagulation, and the smallest grains that are needed for the streaming instability (SI) to form planetesimals.Aims. Here we explore the novel hypothesis that dust coagulation and the SI work in tandem; in other words, they form a feedback loop where each one boosts the action of the other to bridge the gap between dust grains and planetesimals.Methods. We developed a semi-analytical model of dust concentration due to the SI, and an analytic model of how the SI affects the fragmentation and radial drift barriers. We then combined them to model our proposed feedback loop.Results. In the fragmentation-limited regime, we find a powerful synergy between the SI and dust growth that drastically increases both grain sizes and densities. We find that a midplane dust-to-gas ratio of ϵ ≥ 0.3 is a sufficient condition for the feedback loop to reach the planetesimal-forming region for turbulence values 10−4 ≤ α ≤ 10−3 and grain sizes 0.01 ≤ St ≤ 0.1. In contrast, the drift-limited regime only shows grain growth without significant dust accumulation. In other words, planetesimal formation remains challenging in the drift-dominated regime and dust traps may be required to allow planet formation at wide orbital distances.
正反馈:流不稳定性和尘埃凝聚之间的协同作用如何形成星子
上下文。行星形成中最重要的开放问题之一是,原行星盘中的尘埃颗粒如何克服生长障碍,形成我们称之为星子的100公里长的行星构建块。在凝结产生的最大颗粒和流不稳定性(SI)形成星子所需的最小颗粒之间似乎有一个间隙。在这里,我们探索新的假设,粉尘凝聚和SI工作串联;换句话说,它们形成了一个反馈回路,其中每一个都促进另一个的行动,以弥合尘埃颗粒和星子之间的差距。我们建立了由SI引起的粉尘浓度的半解析模型,以及SI如何影响破碎和径向漂移屏障的解析模型。然后,我们将它们结合起来,建立我们提出的反馈回路模型。在碎片化有限的情况下,我们发现SI和粉尘生长之间存在强大的协同作用,从而大大增加了颗粒尺寸和密度。我们发现,当湍流值为10−4≤α≤10−3,晶粒尺寸为0.01≤St≤0.1时,中层尘气比≥0.3是反馈回路到达星子形成区的充分条件。与此相反,漂移限制区只显示颗粒生长,没有明显的粉尘积累。换句话说,在以漂移为主的状态下,星子的形成仍然具有挑战性,可能需要尘埃陷阱来允许在宽轨道距离上形成行星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信