{"title":"A New Class of Splitting Methods That Preserve Ergodicity and Exponential Integrability for the Stochastic Langevin Equation","authors":"Chuchu Chen, Tonghe Dang, Jialin Hong, Fengshan Zhang","doi":"10.1137/24m1687686","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 1000-1024, April 2025. <br/> Abstract. In this paper, we propose a new class of splitting methods to solve the stochastic Langevin equation, which can simultaneously preserve the ergodicity and exponential integrability of the original equation. The central idea is to extract a stochastic subsystem that possesses the strict dissipation from the original equation, which is inspired by the inheritance of the Lyapunov structure for obtaining the ergodicity. We prove that the exponential moment of the numerical solution is bounded, thus validating the exponential integrability of the proposed methods. Further, we show that under moderate verifiable conditions, the methods have the first-order convergence in both strong and weak senses, and we present several concrete splitting schemes based on the methods. The splitting strategy of methods can be readily extended to construct conformal symplectic methods and high-order methods that preserve both the ergodicity and the exponential integrability, as demonstrated in numerical experiments. Our numerical experiments also show that the proposed methods have good performance in the long-time simulation.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"31 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1687686","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 1000-1024, April 2025. Abstract. In this paper, we propose a new class of splitting methods to solve the stochastic Langevin equation, which can simultaneously preserve the ergodicity and exponential integrability of the original equation. The central idea is to extract a stochastic subsystem that possesses the strict dissipation from the original equation, which is inspired by the inheritance of the Lyapunov structure for obtaining the ergodicity. We prove that the exponential moment of the numerical solution is bounded, thus validating the exponential integrability of the proposed methods. Further, we show that under moderate verifiable conditions, the methods have the first-order convergence in both strong and weak senses, and we present several concrete splitting schemes based on the methods. The splitting strategy of methods can be readily extended to construct conformal symplectic methods and high-order methods that preserve both the ergodicity and the exponential integrability, as demonstrated in numerical experiments. Our numerical experiments also show that the proposed methods have good performance in the long-time simulation.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.