Amplitude-Modulated Singular Value Decomposition for Ultrafast Ultrasound Imaging of Gas Vesicles

Ge Zhang;Mathis Vert;Mohamed Nouhoum;Esteban Rivera;Nabil Haidour;Anatole Jimenez;Thomas Deffieux;Simon Barral;Pascal Hersen;Sophie Pezet;Claire Rabut;Mikhail G. Shapiro;Mickael Tanter
{"title":"Amplitude-Modulated Singular Value Decomposition for Ultrafast Ultrasound Imaging of Gas Vesicles","authors":"Ge Zhang;Mathis Vert;Mohamed Nouhoum;Esteban Rivera;Nabil Haidour;Anatole Jimenez;Thomas Deffieux;Simon Barral;Pascal Hersen;Sophie Pezet;Claire Rabut;Mikhail G. Shapiro;Mickael Tanter","doi":"10.1109/TMI.2025.3565023","DOIUrl":null,"url":null,"abstract":"Ultrasound imaging holds significant promise for the observation of molecular and cellular phenomena through the utilization of acoustic contrast agents and acoustic reporter genes. Optimizing imaging methodologies for enhanced detection represents an imperative advancement in this field. Most advanced techniques relying on amplitude modulation schemes such as cross amplitude modulation (xAM) and ultrafast amplitude modulation (uAM) combined with Hadamard encoded multiplane wave transmissions have shown efficacy in capturing the acoustic signals of gas vesicles (GVs). Nonetheless, uAM sequence requires odd- or even-element transmissions leading to imprecise amplitude modulation emitting scheme, and the complex multiplane wave transmission scheme inherently yields overlong pulse durations. xAM sequence is limited in terms of field of view and imaging depth. To overcome these limitations, we introduce an innovative ultrafast imaging sequence called amplitude-modulated singular value decomposition (SVD) processing. Our method demonstrates a contrast imaging sensitivity comparable to the current gold-standard xAM and uAM, while requiring 4.8 times fewer pulse transmissions. With a similar number of transmit pulses, amplitude-modulated SVD outperforms xAM and uAM in terms of an improvement in signal-to-background ratio of <inline-formula> <tex-math>$+ 4.78~\\pm ~0.35$ </tex-math></inline-formula> dB and <inline-formula> <tex-math>$+ 8.29~\\pm ~3.52$ </tex-math></inline-formula> dB, respectively. Furthermore, the method exhibits superior robustness across a wide range of acoustic pressures and enables high-contrast imaging in ex vivo and in vivo settings. Furthermore, amplitude-modulated SVD is envisioned to be applicable for the detection of slow moving microbubbles in ultrasound localization microscopy (ULM).","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 8","pages":"3490-3501"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10979480/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound imaging holds significant promise for the observation of molecular and cellular phenomena through the utilization of acoustic contrast agents and acoustic reporter genes. Optimizing imaging methodologies for enhanced detection represents an imperative advancement in this field. Most advanced techniques relying on amplitude modulation schemes such as cross amplitude modulation (xAM) and ultrafast amplitude modulation (uAM) combined with Hadamard encoded multiplane wave transmissions have shown efficacy in capturing the acoustic signals of gas vesicles (GVs). Nonetheless, uAM sequence requires odd- or even-element transmissions leading to imprecise amplitude modulation emitting scheme, and the complex multiplane wave transmission scheme inherently yields overlong pulse durations. xAM sequence is limited in terms of field of view and imaging depth. To overcome these limitations, we introduce an innovative ultrafast imaging sequence called amplitude-modulated singular value decomposition (SVD) processing. Our method demonstrates a contrast imaging sensitivity comparable to the current gold-standard xAM and uAM, while requiring 4.8 times fewer pulse transmissions. With a similar number of transmit pulses, amplitude-modulated SVD outperforms xAM and uAM in terms of an improvement in signal-to-background ratio of $+ 4.78~\pm ~0.35$ dB and $+ 8.29~\pm ~3.52$ dB, respectively. Furthermore, the method exhibits superior robustness across a wide range of acoustic pressures and enables high-contrast imaging in ex vivo and in vivo settings. Furthermore, amplitude-modulated SVD is envisioned to be applicable for the detection of slow moving microbubbles in ultrasound localization microscopy (ULM).
基于调幅奇异值分解的超快超声气泡成像
超声成像通过声学造影剂和声学报告基因的利用,对分子和细胞现象的观察具有重要的前景。优化成像方法以增强检测是该领域势在必行的进步。基于交叉调幅(xAM)和超快调幅(uAM)等调幅方案的先进技术,结合Hadamard编码多平面波传输,在捕获气体囊泡(GVs)的声信号方面显示出了有效的效果。然而,uAM序列需要奇数元或偶数元传输,导致不精确的调幅发射方案,并且复杂的多平面波传输方案固有地产生过长的脉冲持续时间。xAM序列在视场和成像深度方面受到限制。为了克服这些限制,我们引入了一种创新的超快成像序列,称为调幅奇异值分解(SVD)处理。我们的方法显示了与当前金标准xAM和uAM相当的对比度成像灵敏度,同时需要的脉冲传输减少了4.8倍。在发射脉冲数量相似的情况下,调幅奇异值分解(SVD)的信背景比分别提高了$+ 4.78~\pm ~0.35$ dB和$+ 8.29~\pm ~3.52$ dB,优于xAM和uAM。此外,该方法在广泛的声压范围内表现出优越的鲁棒性,并能够在离体和体内环境中实现高对比度成像。在超声定位显微镜(ULM)中,调幅奇异值分解可用于慢速运动微泡的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信