Enhanced Low-Temperature Photothermal Combustion of C3H8 Using Surface-Engineered Co3O4 Nanocatalysts

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-02-18 DOI:10.1002/cnma.202400674
Yajun Wang, Jianheng Xu, Xinyu Han, Zeshu Zhang, Prof. Xiangguang Yang, Prof. Yibo Zhang
{"title":"Enhanced Low-Temperature Photothermal Combustion of C3H8 Using Surface-Engineered Co3O4 Nanocatalysts","authors":"Yajun Wang,&nbsp;Jianheng Xu,&nbsp;Xinyu Han,&nbsp;Zeshu Zhang,&nbsp;Prof. Xiangguang Yang,&nbsp;Prof. Yibo Zhang","doi":"10.1002/cnma.202400674","DOIUrl":null,"url":null,"abstract":"<p>Propane (C<sub>3</sub>H<sub>8</sub>), a challenging volatile organic compound (VOC), faces limitations in catalytic combustion due to high ignition temperatures and catalyst deactivation. Photothermal catalytic combustion for C3H8, an innovative catalysis approach, significantly improves the low-temperature purification efficiency of catalysts but is limited by the band structure. This study addresses these issues by developing a photothermal Co<sub>3</sub>O<sub>4</sub>-HT catalyst through hydrothermal synthesis, achieving breakthrough low-temperature oxidation performance (T<sub>50</sub> &lt;160 °C) under illumination. Key mechanistic insights reveal that the narrow bandgap and enhanced surface photocurrent of Co<sub>3</sub>O<sub>4</sub>-HT facilitate efficient charge separation, while light irradiation synergistically accelerates lattice oxygen release via the Mars-van Krevelen (MvK) mechanism and promotes gas-phase oxygen activation. Crucially, photogenerated active oxygen species strengthen C<sub>3</sub>H<sub>8</sub> adsorption and rapidly degrade carboxylate/carbonyl intermediates, overcoming conventional kinetic limitations. This work establishes a dual-functional catalytic strategy that integrates photonic energy utilization with thermal activation, providing a universal framework for designing high-efficiency VOC oxidation systems. The demonstrated synergy between band gap engineering and reaction pathway optimization opens new avenues for sustainable air pollution control technologies.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400674","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Propane (C3H8), a challenging volatile organic compound (VOC), faces limitations in catalytic combustion due to high ignition temperatures and catalyst deactivation. Photothermal catalytic combustion for C3H8, an innovative catalysis approach, significantly improves the low-temperature purification efficiency of catalysts but is limited by the band structure. This study addresses these issues by developing a photothermal Co3O4-HT catalyst through hydrothermal synthesis, achieving breakthrough low-temperature oxidation performance (T50 <160 °C) under illumination. Key mechanistic insights reveal that the narrow bandgap and enhanced surface photocurrent of Co3O4-HT facilitate efficient charge separation, while light irradiation synergistically accelerates lattice oxygen release via the Mars-van Krevelen (MvK) mechanism and promotes gas-phase oxygen activation. Crucially, photogenerated active oxygen species strengthen C3H8 adsorption and rapidly degrade carboxylate/carbonyl intermediates, overcoming conventional kinetic limitations. This work establishes a dual-functional catalytic strategy that integrates photonic energy utilization with thermal activation, providing a universal framework for designing high-efficiency VOC oxidation systems. The demonstrated synergy between band gap engineering and reaction pathway optimization opens new avenues for sustainable air pollution control technologies.

Abstract Image

利用表面工程Co3O4纳米催化剂增强C3H8的低温光热燃烧
丙烷(C3H8)是一种具有挑战性的挥发性有机化合物(VOC),由于点火温度高和催化剂失活,在催化燃烧中面临着限制。C3H8光热催化燃烧是一种创新的催化方法,显著提高了催化剂的低温净化效率,但受能带结构的限制。本研究通过水热合成的方法开发了一种光热Co3O4-HT催化剂,实现了突破性的光照下低温氧化性能(T50 <160°C)。关键的机理揭示了Co3O4-HT的窄带隙和增强的表面光电流有利于有效的电荷分离,而光照射通过Mars-van Krevelen (MvK)机制协同加速晶格氧释放,促进气相氧活化。关键是,光生成的活性氧增强了C3H8的吸附,并迅速降解羧酸盐/羰基中间体,克服了传统的动力学限制。本研究建立了一种结合光子能量利用和热活化的双功能催化策略,为设计高效VOC氧化系统提供了一个通用框架。带隙工程和反应途径优化之间的协同作用为可持续空气污染控制技术开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信