{"title":"Enhancing theranostic potential of anti-mesothelin sdAb through site-specific labeling at a unique conserved lysine by molecular engineering","authors":"Émilien N’Guessan, Florian Raes, Mitra Ahmadi, Sandrine Bacot, Laurent Dumas, Julien Leenhardt, Marlène Debiossat, Clémence André, Jean-Luc Lenormand, Catherine Ghezzi, Daniel Fagret, Charlotte Lombardi, Alexis Broisat","doi":"10.1186/s41181-025-00340-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Mesothelin is a 40 kDa glycoprotein overexpressed in several cancers, including triple-negative breast cancer (TNBC). The anti-mesothelin single-domain antibody (sdAb, or nanobody) A1 can serve as a radio-theranostic agent, but random DOTA conjugation on lysines yields heterogeneous products.</p><h3>Results</h3><p>We reengineered A1-His by directed mutagenesis to produce four single-lysine variants (A1K1-His, A1K2-His, A1K3-His, and A1K4-His). Each was site-specifically conjugated with p-SCN-Bn-DOTA, radiolabeled with <sup>68</sup>Ga, and evaluated by PET imaging in mice bearing HCC70 TNBC xenografts, followed by ex vivo biodistribution at 1 h post-injection. All mutants were successfully produced and site-specifically conjugated. A1K1-His showed lower conjugation efficiency and increased liver/spleen retention, whereas A1K3-His exhibited reduced stability. A1K2-His and A1K4-His performed best overall. Removing the His-tag and administering gelofusin further lowered renal uptake. Notably, A1K2 displayed tumor-to-kidney and tumor-to-liver ratios 2.4 and 1.9 times higher, respectively, than A1K4 (<i>p</i> < 0.01).</p><h3>Conclusions</h3><p>For the first time, site-specific DOTA conjugation using sdAb derivatives containing a single lysine was achieved, avoiding the production of mixed final compounds. These findings identify <sup>68</sup>Ga-DOTA-A1K2 as the leading candidate for mesothelin-expressing tumor imaging with minimal off-target uptake. Ongoing studies will assess its therapeutic utility with <sup>177</sup>Lu-DOTA-A1K2. Since these four lysines are conserved in many sdAbs, this strategy may be broadly applicable for site-specific sdAb labeling.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"10 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-025-00340-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-025-00340-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Mesothelin is a 40 kDa glycoprotein overexpressed in several cancers, including triple-negative breast cancer (TNBC). The anti-mesothelin single-domain antibody (sdAb, or nanobody) A1 can serve as a radio-theranostic agent, but random DOTA conjugation on lysines yields heterogeneous products.
Results
We reengineered A1-His by directed mutagenesis to produce four single-lysine variants (A1K1-His, A1K2-His, A1K3-His, and A1K4-His). Each was site-specifically conjugated with p-SCN-Bn-DOTA, radiolabeled with 68Ga, and evaluated by PET imaging in mice bearing HCC70 TNBC xenografts, followed by ex vivo biodistribution at 1 h post-injection. All mutants were successfully produced and site-specifically conjugated. A1K1-His showed lower conjugation efficiency and increased liver/spleen retention, whereas A1K3-His exhibited reduced stability. A1K2-His and A1K4-His performed best overall. Removing the His-tag and administering gelofusin further lowered renal uptake. Notably, A1K2 displayed tumor-to-kidney and tumor-to-liver ratios 2.4 and 1.9 times higher, respectively, than A1K4 (p < 0.01).
Conclusions
For the first time, site-specific DOTA conjugation using sdAb derivatives containing a single lysine was achieved, avoiding the production of mixed final compounds. These findings identify 68Ga-DOTA-A1K2 as the leading candidate for mesothelin-expressing tumor imaging with minimal off-target uptake. Ongoing studies will assess its therapeutic utility with 177Lu-DOTA-A1K2. Since these four lysines are conserved in many sdAbs, this strategy may be broadly applicable for site-specific sdAb labeling.