Translating community-wide spectral library into actionable chemical knowledge: a proof of concept with monoterpene indole alkaloids

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sarah Szwarc, Adriano Rutz, Kyungha Lee, Yassine Mejri, Olivier Bonnet, Hazrina Hazni, Adrien Jagora, Rany B. Mbeng Obame, Jin Kyoung Noh, Elvis Otogo N’Nang, Stephenie C. Alaribe, Khalijah Awang, Guillaume Bernadat, Young Hae Choi, Vincent Courdavault, Michel Frederich, Thomas Gaslonde, Florian Huber, Toh-Seok Kam, Yun Yee Low, Erwan Poupon, Justin J. J. van der Hooft, Kyo Bin Kang, Pierre Le Pogam, Mehdi A. Beniddir
{"title":"Translating community-wide spectral library into actionable chemical knowledge: a proof of concept with monoterpene indole alkaloids","authors":"Sarah Szwarc,&nbsp;Adriano Rutz,&nbsp;Kyungha Lee,&nbsp;Yassine Mejri,&nbsp;Olivier Bonnet,&nbsp;Hazrina Hazni,&nbsp;Adrien Jagora,&nbsp;Rany B. Mbeng Obame,&nbsp;Jin Kyoung Noh,&nbsp;Elvis Otogo N’Nang,&nbsp;Stephenie C. Alaribe,&nbsp;Khalijah Awang,&nbsp;Guillaume Bernadat,&nbsp;Young Hae Choi,&nbsp;Vincent Courdavault,&nbsp;Michel Frederich,&nbsp;Thomas Gaslonde,&nbsp;Florian Huber,&nbsp;Toh-Seok Kam,&nbsp;Yun Yee Low,&nbsp;Erwan Poupon,&nbsp;Justin J. J. van der Hooft,&nbsp;Kyo Bin Kang,&nbsp;Pierre Le Pogam,&nbsp;Mehdi A. Beniddir","doi":"10.1186/s13321-025-01009-0","DOIUrl":null,"url":null,"abstract":"<div><p>With over 3000 representatives, the monoterpene indole alkaloids (MIAs) class is among the most diverse families of plant natural products. The MS/MS spectral space exploration of these complex compounds using chemoinformatic and computational mass spectrometry tools offers a valuable opportunity to extract and share chemical insights from this emblematic family of natural products (NPs). In this work, we first present a substantially updated version of the MIADB, a database now containing 422 MS/MS spectra of MIAs that has been uploaded to the GNPS library versus 172 initial entries. We then introduce an innovative workflow that leverages hundreds of fragmentation spectra to support the FAIRification, extraction and dissemination of chemical knowledge. This workflow aims at the extraction of spectral patterns matching finely defined MIA skeletons. These extracted signatures can then be queried against complex biological extract datasets using MassQL. By applying this strategy to an LC-MS/MS dataset of 75 plant extracts, our results demonstrated the efficiency of this approach in identifying the diversity of MIA skeletons present in the analyzed samples. Additionally, our work enabled the digitization of structural data for diverse MIA skeletons by converting them into machine-readable formats and thereby enhancing their dissemination for the scientific community.</p><p><b>Scientific contribution</b> A comprehensive investigation of the monoterpene indole alkaloid chemical space, aiming to highlight skeleton-dependent fragmentation similarity trends and to generate valuable spectrometric signatures that could be used as queries.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01009-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01009-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With over 3000 representatives, the monoterpene indole alkaloids (MIAs) class is among the most diverse families of plant natural products. The MS/MS spectral space exploration of these complex compounds using chemoinformatic and computational mass spectrometry tools offers a valuable opportunity to extract and share chemical insights from this emblematic family of natural products (NPs). In this work, we first present a substantially updated version of the MIADB, a database now containing 422 MS/MS spectra of MIAs that has been uploaded to the GNPS library versus 172 initial entries. We then introduce an innovative workflow that leverages hundreds of fragmentation spectra to support the FAIRification, extraction and dissemination of chemical knowledge. This workflow aims at the extraction of spectral patterns matching finely defined MIA skeletons. These extracted signatures can then be queried against complex biological extract datasets using MassQL. By applying this strategy to an LC-MS/MS dataset of 75 plant extracts, our results demonstrated the efficiency of this approach in identifying the diversity of MIA skeletons present in the analyzed samples. Additionally, our work enabled the digitization of structural data for diverse MIA skeletons by converting them into machine-readable formats and thereby enhancing their dissemination for the scientific community.

Scientific contribution A comprehensive investigation of the monoterpene indole alkaloid chemical space, aiming to highlight skeleton-dependent fragmentation similarity trends and to generate valuable spectrometric signatures that could be used as queries.

Graphical Abstract

将社区范围内的光谱库转化为可操作的化学知识:单萜吲哚生物碱的概念证明
单萜吲哚生物碱(MIAs)类有3000多种代表,是植物天然产物中最多样化的家族之一。利用化学信息学和计算质谱工具对这些复杂化合物进行MS/MS光谱空间探索,为从这一具有象征意义的天然产物家族(NPs)中提取和分享化学见解提供了宝贵的机会。在这项工作中,我们首先提出了MIADB的实质性更新版本,该数据库现在包含422个已上传到GNPS库的MIAs的MS/MS谱,而不是最初的172个条目。然后,我们引入了一个创新的工作流程,利用数百个碎片光谱来支持化学知识的公平化,提取和传播。该工作流程旨在提取与精细定义的MIA骨架匹配的光谱模式。然后可以使用MassQL对复杂的生物提取数据集查询这些提取的签名。通过将该策略应用于75种植物提取物的LC-MS/MS数据集,我们的结果证明了该方法在识别分析样品中存在的MIA骨架多样性方面的有效性。此外,我们的工作通过将各种MIA骨骼的结构数据转换为机器可读的格式,从而增强了它们在科学界的传播,从而实现了结构数据的数字化。对单萜吲哚生物碱化学空间的全面研究,旨在突出骨骼依赖的碎片相似性趋势,并产生可用于查询的有价值的光谱特征。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信