SMILES all around: structure to SMILES conversion for transition metal complexes

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Maria H. Rasmussen, Magnus Strandgaard, Julius Seumer, Laura K. Hemmingsen, Angelo Frei, David Balcells, Jan H. Jensen
{"title":"SMILES all around: structure to SMILES conversion for transition metal complexes","authors":"Maria H. Rasmussen,&nbsp;Magnus Strandgaard,&nbsp;Julius Seumer,&nbsp;Laura K. Hemmingsen,&nbsp;Angelo Frei,&nbsp;David Balcells,&nbsp;Jan H. Jensen","doi":"10.1186/s13321-025-01008-1","DOIUrl":null,"url":null,"abstract":"<div><p>We present a method for creating RDKit-parsable SMILES for transition metal complexes (TMCs) based on xyz-coordinates and overall charge of the complex. This can be viewed as an extension to the program xyz2mol that does the same for organic molecules. The only dependency is RDKit, which makes it widely applicable. One thing that has been lacking when it comes to generating SMILES from structure for TMCs is an existing SMILES dataset to compare with. Therefore, sanity-checking a method has required manual work. Therefore, we also generate SMILES two other ways; one where ligand charges and TMC connectivity are based on natural bond orbital (NBO) analysis from density functional theory (DFT) calculations utilizing recent work by Kneiding et al. (Digit Discov 2: 618–633, 2023). Another one fixes SMILES available through the Cambridge Structural Database (CSD), making them parsable by RDKit. We compare these three different ways of obtaining SMILES for a subset of the CSD (tmQMg) and find &gt;70% agreement for all three pairs. We utilize these SMILES to make simple molecular fingerprint (FP) and graph-based representations of the molecules to be used in the context of machine learning. Comparing with the graphs made by Kneiding et al. where nodes and edges are featurized with DFT properties, we find that depending on the target property (polarizability, HOMO-LUMO gap or dipole moment) the SMILES based representations can perform equally well. This makes them very suitable as baseline-models. Finally we present a dataset of 227k RDKit parsable SMILES for mononuclear TMCs in the CSD.</p><p><b>Scientific contribution</b> We present a method that can create RDKit-parsable SMILES strings of transition metal complexes (TMCs) from Cartesian coordinates and use it to create a dataset of 227k TMC SMILES strings. The RDKit-parsability allows us to generate perform machine learning studies of TMC properties using ”standard” molecular representations such as fingerprints and 2D-graph convolution. We show that these relatively simple representations can perform quite well depending on the target property.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01008-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01008-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method for creating RDKit-parsable SMILES for transition metal complexes (TMCs) based on xyz-coordinates and overall charge of the complex. This can be viewed as an extension to the program xyz2mol that does the same for organic molecules. The only dependency is RDKit, which makes it widely applicable. One thing that has been lacking when it comes to generating SMILES from structure for TMCs is an existing SMILES dataset to compare with. Therefore, sanity-checking a method has required manual work. Therefore, we also generate SMILES two other ways; one where ligand charges and TMC connectivity are based on natural bond orbital (NBO) analysis from density functional theory (DFT) calculations utilizing recent work by Kneiding et al. (Digit Discov 2: 618–633, 2023). Another one fixes SMILES available through the Cambridge Structural Database (CSD), making them parsable by RDKit. We compare these three different ways of obtaining SMILES for a subset of the CSD (tmQMg) and find >70% agreement for all three pairs. We utilize these SMILES to make simple molecular fingerprint (FP) and graph-based representations of the molecules to be used in the context of machine learning. Comparing with the graphs made by Kneiding et al. where nodes and edges are featurized with DFT properties, we find that depending on the target property (polarizability, HOMO-LUMO gap or dipole moment) the SMILES based representations can perform equally well. This makes them very suitable as baseline-models. Finally we present a dataset of 227k RDKit parsable SMILES for mononuclear TMCs in the CSD.

Scientific contribution We present a method that can create RDKit-parsable SMILES strings of transition metal complexes (TMCs) from Cartesian coordinates and use it to create a dataset of 227k TMC SMILES strings. The RDKit-parsability allows us to generate perform machine learning studies of TMC properties using ”standard” molecular representations such as fingerprints and 2D-graph convolution. We show that these relatively simple representations can perform quite well depending on the target property.

周围的SMILES:过渡金属配合物的结构到SMILES的转换
我们提出了一种基于xyz坐标和过渡金属配合物的总电荷为过渡金属配合物(tmc)创建rdkit可解析smile的方法。这可以看作是xyz2mol程序的扩展,xyz2mol程序对有机分子做同样的事情。唯一的依赖是RDKit,这使得它广泛适用。当涉及到从tmc的结构中生成SMILES时,缺少的一件事是与现有的SMILES数据集进行比较。因此,检查方法的安全性需要手工工作。因此,我们还以另外两种方式生成SMILES;其中配体电荷和TMC连通性基于密度泛函理论(DFT)计算的自然键轨道(NBO)分析,利用Kneiding等人最近的工作(数字发现2:618-633,2023)。另一个通过剑桥结构数据库(CSD)修复了smile,使它们可以被RDKit解析。我们比较了这三种不同的获得CSD子集(tmQMg)的smile的方法,发现所有三对的一致性为>;70%。我们利用这些smile来制作简单的分子指纹(FP)和基于图形的分子表示,以用于机器学习。与Kneiding等人制作的具有DFT属性的节点和边缘的图相比,我们发现基于SMILES的表示可以根据目标属性(极化率,HOMO-LUMO间隙或偶极矩)表现得同样好。这使得它们非常适合作为基准模型。最后,我们提出了一个包含227k RDKit可解析smile的CSD单核tmc数据集。我们提出了一种从笛卡尔坐标创建可被rdkit解析的过渡金属配合物(TMC) SMILES字符串的方法,并用它创建了一个包含227k个TMC SMILES字符串的数据集。rdkit可解析性允许我们使用“标准”分子表示(如指纹和2d图卷积)生成执行TMC属性的机器学习研究。我们展示了这些相对简单的表示可以根据目标属性很好地执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信