{"title":"Neural Network-Based Imitation Learning for Approximating Stochastic Battery Management Systems","authors":"Andrea Pozzi;Alessandro Incremona;Daniele Toti","doi":"10.1109/ACCESS.2025.3563300","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries play a pivotal role in enabling eco-friendly mobility, particularly in electric vehicles, but optimizing their charging process to improve battery lifespan, safety, and overall efficiency remains a significant challenge. Traditional predictive control methods are limited by their reliance on precise models, which are often hindered by uncertainties in battery parameters due to aging, production variability, and operational conditions. While stochastic predictive control policies can address these uncertainties by incorporating them directly into the optimization process, they typically introduce considerable computational complexity. In response to this challenge, this paper presents a novel approach that adapts imitation learning to efficiently approximate stochastic predictive control strategies, thus significantly reducing the computational burden through offline training. Specifically, the proposed method leverages the Dataset Aggregation algorithm to overcome the issue of distributional shift, a common limitation in imitation learning frameworks. Simulations based on a detailed electrochemical model demonstrate the effectiveness of the method, adhering to probabilistic constraints while offering a scalable and computationally efficient solution for advanced battery management systems.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"71041-71052"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973123","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10973123/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion batteries play a pivotal role in enabling eco-friendly mobility, particularly in electric vehicles, but optimizing their charging process to improve battery lifespan, safety, and overall efficiency remains a significant challenge. Traditional predictive control methods are limited by their reliance on precise models, which are often hindered by uncertainties in battery parameters due to aging, production variability, and operational conditions. While stochastic predictive control policies can address these uncertainties by incorporating them directly into the optimization process, they typically introduce considerable computational complexity. In response to this challenge, this paper presents a novel approach that adapts imitation learning to efficiently approximate stochastic predictive control strategies, thus significantly reducing the computational burden through offline training. Specifically, the proposed method leverages the Dataset Aggregation algorithm to overcome the issue of distributional shift, a common limitation in imitation learning frameworks. Simulations based on a detailed electrochemical model demonstrate the effectiveness of the method, adhering to probabilistic constraints while offering a scalable and computationally efficient solution for advanced battery management systems.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.