Neural Network-Based Imitation Learning for Approximating Stochastic Battery Management Systems

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Andrea Pozzi;Alessandro Incremona;Daniele Toti
{"title":"Neural Network-Based Imitation Learning for Approximating Stochastic Battery Management Systems","authors":"Andrea Pozzi;Alessandro Incremona;Daniele Toti","doi":"10.1109/ACCESS.2025.3563300","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries play a pivotal role in enabling eco-friendly mobility, particularly in electric vehicles, but optimizing their charging process to improve battery lifespan, safety, and overall efficiency remains a significant challenge. Traditional predictive control methods are limited by their reliance on precise models, which are often hindered by uncertainties in battery parameters due to aging, production variability, and operational conditions. While stochastic predictive control policies can address these uncertainties by incorporating them directly into the optimization process, they typically introduce considerable computational complexity. In response to this challenge, this paper presents a novel approach that adapts imitation learning to efficiently approximate stochastic predictive control strategies, thus significantly reducing the computational burden through offline training. Specifically, the proposed method leverages the Dataset Aggregation algorithm to overcome the issue of distributional shift, a common limitation in imitation learning frameworks. Simulations based on a detailed electrochemical model demonstrate the effectiveness of the method, adhering to probabilistic constraints while offering a scalable and computationally efficient solution for advanced battery management systems.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"71041-71052"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973123","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10973123/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries play a pivotal role in enabling eco-friendly mobility, particularly in electric vehicles, but optimizing their charging process to improve battery lifespan, safety, and overall efficiency remains a significant challenge. Traditional predictive control methods are limited by their reliance on precise models, which are often hindered by uncertainties in battery parameters due to aging, production variability, and operational conditions. While stochastic predictive control policies can address these uncertainties by incorporating them directly into the optimization process, they typically introduce considerable computational complexity. In response to this challenge, this paper presents a novel approach that adapts imitation learning to efficiently approximate stochastic predictive control strategies, thus significantly reducing the computational burden through offline training. Specifically, the proposed method leverages the Dataset Aggregation algorithm to overcome the issue of distributional shift, a common limitation in imitation learning frameworks. Simulations based on a detailed electrochemical model demonstrate the effectiveness of the method, adhering to probabilistic constraints while offering a scalable and computationally efficient solution for advanced battery management systems.
基于神经网络的随机电池管理系统模拟学习
锂离子电池在实现环保出行方面发挥着关键作用,尤其是在电动汽车中,但优化充电过程以提高电池寿命、安全性和整体效率仍然是一个重大挑战。传统的预测控制方法依赖于精确的模型,而这些模型往往受到电池参数的不确定性(如老化、生产变异性和操作条件)的阻碍。虽然随机预测控制策略可以通过将这些不确定性直接纳入优化过程来解决这些不确定性,但它们通常会引入相当大的计算复杂性。针对这一挑战,本文提出了一种新的方法,将模仿学习有效地近似随机预测控制策略,从而通过离线训练显着减少计算负担。具体而言,该方法利用数据集聚合算法克服了模仿学习框架中常见的分布偏移问题。基于详细电化学模型的仿真证明了该方法的有效性,该方法在遵守概率约束的同时,为先进的电池管理系统提供了可扩展且计算效率高的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信