Lijun You , Yunsong Xie , Yang Chen , Yili Kang , Chen Huang , Huaijian Zhai
{"title":"Development directions of formation damage evaluation and fracturing fluids in tight and shale oil reservoirs","authors":"Lijun You , Yunsong Xie , Yang Chen , Yili Kang , Chen Huang , Huaijian Zhai","doi":"10.1016/j.petlm.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Tight and shale oil reservoirs are characterized by small pore throats, low porosity, and low permeability, which must be stimulated to increase production. Fluid flow experiences a multi-scale transport process, starting from the matrix pore throats, extending to the natural fractures, and reaching the hydraulic fractures. Initially, tight and shale oil wells exhibit high production rates after hydraulic fracturing. However, this rapidly decreases due to insufficient energy in the reservoir, as well as formation damage to the reservoir, which impedes the multi-scale transport process. Consequently, effective systems for low-damage slickwater fracturing fluids and clean fracturing fluids to ensure the scale and effective development of tight and shale oil reservoirs after volume stimulation have been widely used. The pressure decay method and high back pressure displacement method have provided the valuable foundations for selecting fracturing fluids for tight and shale oil reservoirs. Nonetheless, challenges such as slow fluid transfer unpropped fracture closure, and water-phase trapping damage in tight and shale oil reservoirs need to be addressed urgently. Therefore, integrating fracture preservation, energy enhancement, and damage removal concepts will be essential for successful reservoir stimulation in tight and shale oil reservoirs. Additionally, exploring matching formation damage evaluation and fracturing fluid optimization technologies is crucial to achieving the efficient development of tight and shale oil reservoirs. These will all improve fracture stimulation effects and reservoir recovery, ultimately maximizing the reservoir potential.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"11 2","pages":"Pages 125-142"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240565612500015X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Tight and shale oil reservoirs are characterized by small pore throats, low porosity, and low permeability, which must be stimulated to increase production. Fluid flow experiences a multi-scale transport process, starting from the matrix pore throats, extending to the natural fractures, and reaching the hydraulic fractures. Initially, tight and shale oil wells exhibit high production rates after hydraulic fracturing. However, this rapidly decreases due to insufficient energy in the reservoir, as well as formation damage to the reservoir, which impedes the multi-scale transport process. Consequently, effective systems for low-damage slickwater fracturing fluids and clean fracturing fluids to ensure the scale and effective development of tight and shale oil reservoirs after volume stimulation have been widely used. The pressure decay method and high back pressure displacement method have provided the valuable foundations for selecting fracturing fluids for tight and shale oil reservoirs. Nonetheless, challenges such as slow fluid transfer unpropped fracture closure, and water-phase trapping damage in tight and shale oil reservoirs need to be addressed urgently. Therefore, integrating fracture preservation, energy enhancement, and damage removal concepts will be essential for successful reservoir stimulation in tight and shale oil reservoirs. Additionally, exploring matching formation damage evaluation and fracturing fluid optimization technologies is crucial to achieving the efficient development of tight and shale oil reservoirs. These will all improve fracture stimulation effects and reservoir recovery, ultimately maximizing the reservoir potential.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing