Speech Emotion Recognition via CNN-Transformer and multidimensional attention mechanism

IF 2.4 3区 计算机科学 Q2 ACOUSTICS
Xiaoyu Tang , Jiazheng Huang , Yixin Lin , Ting Dang , Jintao Cheng
{"title":"Speech Emotion Recognition via CNN-Transformer and multidimensional attention mechanism","authors":"Xiaoyu Tang ,&nbsp;Jiazheng Huang ,&nbsp;Yixin Lin ,&nbsp;Ting Dang ,&nbsp;Jintao Cheng","doi":"10.1016/j.specom.2025.103242","DOIUrl":null,"url":null,"abstract":"<div><div>Speech Emotion Recognition (SER) is crucial in human–machine interactions. Previous approaches have predominantly focused on local spatial or channel information and neglected the temporal information in speech. In this paper, to model local and global information at different levels of granularity in speech and capture temporal, spatial and channel dependencies in speech signals, we propose a Speech Emotion Recognition network based on CNN-Transformer and multi-dimensional attention mechanisms. Specifically, a stack of CNN blocks is dedicated to capturing local information in speech from a time–frequency perspective. In addition, a time-channel-space attention mechanism is used to enhance features across three dimensions. Moreover, we model local and global dependencies of feature sequences using large convolutional kernels with depthwise separable convolutions and lightweight Transformer modules. We evaluate the proposed method on IEMOCAP and Emo-DB datasets and show our approach significantly improves the performance over the state-of-the-art methods. <span><span>https://github.com/SCNU-RISLAB/CNN-Transforemr-and-Multidimensional-Attention-Mechanism</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"171 ","pages":"Article 103242"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639325000573","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Speech Emotion Recognition (SER) is crucial in human–machine interactions. Previous approaches have predominantly focused on local spatial or channel information and neglected the temporal information in speech. In this paper, to model local and global information at different levels of granularity in speech and capture temporal, spatial and channel dependencies in speech signals, we propose a Speech Emotion Recognition network based on CNN-Transformer and multi-dimensional attention mechanisms. Specifically, a stack of CNN blocks is dedicated to capturing local information in speech from a time–frequency perspective. In addition, a time-channel-space attention mechanism is used to enhance features across three dimensions. Moreover, we model local and global dependencies of feature sequences using large convolutional kernels with depthwise separable convolutions and lightweight Transformer modules. We evaluate the proposed method on IEMOCAP and Emo-DB datasets and show our approach significantly improves the performance over the state-of-the-art methods. https://github.com/SCNU-RISLAB/CNN-Transforemr-and-Multidimensional-Attention-Mechanism.
基于CNN-Transformer和多维注意机制的语音情感识别
语音情感识别在人机交互中起着至关重要的作用。以往的方法主要关注局部空间信息或通道信息,而忽略了语音中的时间信息。为了对语音中不同粒度层次的局部和全局信息进行建模,并捕获语音信号中的时间、空间和通道依赖关系,本文提出了一种基于CNN-Transformer和多维注意机制的语音情感识别网络。具体来说,一堆CNN块致力于从时频角度捕获语音中的局部信息。此外,还采用了一种时间-通道-空间注意机制来增强三维特征。此外,我们使用具有深度可分离卷积的大卷积核和轻量级Transformer模块来建模特征序列的局部和全局依赖关系。我们在IEMOCAP和Emo-DB数据集上评估了所提出的方法,并表明我们的方法比最先进的方法显着提高了性能。https://github.com/SCNU-RISLAB/CNN-Transforemr-and-Multidimensional-Attention-Mechanism。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信