Nonparametric estimation of the transition density function for diffusion processes

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Fabienne Comte , Nicolas Marie
{"title":"Nonparametric estimation of the transition density function for diffusion processes","authors":"Fabienne Comte ,&nbsp;Nicolas Marie","doi":"10.1016/j.spa.2025.104667","DOIUrl":null,"url":null,"abstract":"<div><div>We assume that we observe <span><math><mrow><mi>N</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> independent copies of a diffusion process on a time-interval <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>T</mi><mo>]</mo></mrow></math></span>. For a given time <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></mrow></mrow></math></span>, we estimate the transition density <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mo>.</mo><mo>)</mo></mrow></mrow></math></span>, namely the conditional density of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi><mo>+</mo><mi>s</mi></mrow></msub></math></span> given <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mi>x</mi></mrow></math></span>, under conditions on the diffusion coefficients ensuring that this quantity exists. We use a least squares projection method on a product of finite dimensional spaces, prove risk bounds for the estimator and propose an anisotropic model selection method, relying on several reference norms. A simulation study illustrates the theoretical part for Ornstein–Uhlenbeck or square-root (Cox-Ingersoll-Ross) processes.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"188 ","pages":"Article 104667"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001085","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We assume that we observe NN independent copies of a diffusion process on a time-interval [0,2T]. For a given time t(0,T], we estimate the transition density pt(x,.), namely the conditional density of Xt+s given Xs=x, under conditions on the diffusion coefficients ensuring that this quantity exists. We use a least squares projection method on a product of finite dimensional spaces, prove risk bounds for the estimator and propose an anisotropic model selection method, relying on several reference norms. A simulation study illustrates the theoretical part for Ornstein–Uhlenbeck or square-root (Cox-Ingersoll-Ross) processes.
扩散过程过渡密度函数的非参数估计
我们假设在时间区间[0,2t]上观察到扩散过程的N∈N *独立副本。对于给定时间t∈(0,t],我们估计了过渡密度pt(x,.),即当x =x时,在扩散系数保证这个量存在的条件下,Xt+s的条件密度。我们在有限维空间的乘积上使用了最小二乘投影法,证明了估计量的风险界限,并提出了一种各向异性模型选择方法,依赖于几个参考规范。模拟研究说明了Ornstein-Uhlenbeck或平方根(Cox-Ingersoll-Ross)过程的理论部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信