Zhen Guo , Yiwen Huang , Xiaowei Wang , Yi Han , Ang Li , Yiyang Qu , Lin Chen , Meihang Du , Yiming Zhang , Yuanzhi Xu
{"title":"Ergothioneine alleviates osteoporosis via the ROS-MAPK signaling Axis","authors":"Zhen Guo , Yiwen Huang , Xiaowei Wang , Yi Han , Ang Li , Yiyang Qu , Lin Chen , Meihang Du , Yiming Zhang , Yuanzhi Xu","doi":"10.1016/j.bone.2025.117496","DOIUrl":null,"url":null,"abstract":"<div><div>The accumulation of reactive oxygen species (ROS) within cells regulates the formation and function of osteoclasts, which is crucial therapeutic target for the treatment of osteoporosis. Ergothioneine (EGT) is a rare amino acid with strong antioxidant and anti-inflammatory properties. However, its application on osteoporosis has not been reported. In this study, we investigated the effects of EGT on osteoclastogenesis in vitro and in ovariectomized (OVX) mice. The results revealed that EGT could suppress RANKL-induced podosome belt formation and osteoclast development in vitro, while reducing intracellular ROS levels by upregulating key antioxidant enzymes, including HO-1 and Catalase. EGT was also found to downregulate the expression of critical osteoclast-specific proteins such as Trap, c-Fos, and Ctsk through attenuation of MAPK signaling. The potential of EGT to protect against trabecular bone loss in OVX mice was further demonstrated by micro-CT imaging, possibly by reducing osteoclast numbers shown by histological outcomes. These findings together highlighted the potential value of EGT as a novel tool for treating osteoporosis through its ability to suppress osteoclastogenesis and mitigate the accumulation of intracellular ROS.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"197 ","pages":"Article 117496"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328225001085","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The accumulation of reactive oxygen species (ROS) within cells regulates the formation and function of osteoclasts, which is crucial therapeutic target for the treatment of osteoporosis. Ergothioneine (EGT) is a rare amino acid with strong antioxidant and anti-inflammatory properties. However, its application on osteoporosis has not been reported. In this study, we investigated the effects of EGT on osteoclastogenesis in vitro and in ovariectomized (OVX) mice. The results revealed that EGT could suppress RANKL-induced podosome belt formation and osteoclast development in vitro, while reducing intracellular ROS levels by upregulating key antioxidant enzymes, including HO-1 and Catalase. EGT was also found to downregulate the expression of critical osteoclast-specific proteins such as Trap, c-Fos, and Ctsk through attenuation of MAPK signaling. The potential of EGT to protect against trabecular bone loss in OVX mice was further demonstrated by micro-CT imaging, possibly by reducing osteoclast numbers shown by histological outcomes. These findings together highlighted the potential value of EGT as a novel tool for treating osteoporosis through its ability to suppress osteoclastogenesis and mitigate the accumulation of intracellular ROS.
期刊介绍:
BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.