Ulam–Hyers–Rassias stability of Hilfer fractional stochastic impulsive differential equations with non-local condition via Time-changed Brownian motion followed by the currency options pricing model

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Dimplekumar Chalishajar , Dhanalakshmi Kasinathan , Ravikumar Kasinathan , Ramkumar Kasinathan
{"title":"Ulam–Hyers–Rassias stability of Hilfer fractional stochastic impulsive differential equations with non-local condition via Time-changed Brownian motion followed by the currency options pricing model","authors":"Dimplekumar Chalishajar ,&nbsp;Dhanalakshmi Kasinathan ,&nbsp;Ravikumar Kasinathan ,&nbsp;Ramkumar Kasinathan","doi":"10.1016/j.chaos.2025.116468","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a new solution representation and Ulam-Hyer’s Rassias stability of Hilfer fractional stochastic impulsive differential systems (HFSIDEs) with non-local condition via Time-changed fractional Brownian motion (TCFBM) is studied. The wellposedness of solutions are proved in the finite-dimensional space by using fixed point theorem (FPT). Finally, to account for the long-memory property of the spot exchange rate, we offer a novel framework for pricing currency options in line with the TCFBM model.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116468"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004813","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new solution representation and Ulam-Hyer’s Rassias stability of Hilfer fractional stochastic impulsive differential systems (HFSIDEs) with non-local condition via Time-changed fractional Brownian motion (TCFBM) is studied. The wellposedness of solutions are proved in the finite-dimensional space by using fixed point theorem (FPT). Finally, to account for the long-memory property of the spot exchange rate, we offer a novel framework for pricing currency options in line with the TCFBM model.
非局部条件下随时变布朗运动的Hilfer分数阶随机脉冲微分方程的Ulam-Hyers-Rassias稳定性
本文研究了非局域条件下Hilfer分数阶随机脉冲微分系统(HFSIDEs)的时变分数阶布朗运动(TCFBM)的一种新的解表示和Ulam-Hyer’s Rassias稳定性。利用不动点定理在有限维空间中证明了解的适定性。最后,考虑到现货汇率的长期记忆特性,我们提供了一个与TCFBM模型一致的货币期权定价的新框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信