Robust support vector machine based on the bounded asymmetric least squares loss function and its applications in noise corrupted data

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiaqi Zhang, Hu Yang
{"title":"Robust support vector machine based on the bounded asymmetric least squares loss function and its applications in noise corrupted data","authors":"Jiaqi Zhang,&nbsp;Hu Yang","doi":"10.1016/j.aei.2025.103371","DOIUrl":null,"url":null,"abstract":"<div><div>The support vector machine (SVM) is a popular machine learning tool that has achieved great success in various fields, but its performance is significantly disturbed on noise corrupted datasets. In this paper, motivated by the bounded quantile loss function, based on the relationship of the expectile and asymmetric least squares loss function, we propose the bounded asymmetric least squares loss function (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>l</mi><mi>s</mi></mrow></msub></math></span> loss function). The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>l</mi><mi>s</mi></mrow></msub></math></span> loss function is an extension of the asymmetric least squares loss function. <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>l</mi><mi>s</mi></mrow></msub></math></span> loss function inherits the good properties from the asymmetric least squares loss function, such as asymmetric and differentiable. Further, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>l</mi><mi>s</mi></mrow></msub></math></span> loss function is more robust to noise in classification and regression problems. Next, we propose two models based on <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>l</mi><mi>s</mi></mrow></msub></math></span> loss function, namely, BALS-SVM and BALS-SVR. The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>l</mi><mi>s</mi></mrow></msub></math></span> loss function is a non-convex loss function which makes it difficult to optimize. Thus, we design a clipping dual coordinate descent (clipDCD) based half-quadratic algorithm for solving the proposed models. We further find that BALS-SVM and BALS-SVR can be viewed as iterative weighted asymmetric least squares loss function based support vector machines and support vector regression, which enhances the interpretability of the models. Finally, we provide a theoretical analysis of the model based on a general framework of bounded loss function, mainly including Fisher consistency and noise insensitivity. Meanwhile, theoretical guarantees are provided for the proposed models. The results on the simulated dataset and the 14 classification and 11 regression benchmark dataset show that our method is superior compared to the classical methods and some state-of-the-art methods, especially on the noise corrupted dataset. The statistical tests further confirm this fact. Experiments on the Fashion MNIST dataset and gene expression dataset further illustrate that our proposed model also performs well in real environments.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103371"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625002642","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The support vector machine (SVM) is a popular machine learning tool that has achieved great success in various fields, but its performance is significantly disturbed on noise corrupted datasets. In this paper, motivated by the bounded quantile loss function, based on the relationship of the expectile and asymmetric least squares loss function, we propose the bounded asymmetric least squares loss function (Lbals loss function). The Lbals loss function is an extension of the asymmetric least squares loss function. Lbals loss function inherits the good properties from the asymmetric least squares loss function, such as asymmetric and differentiable. Further, Lbals loss function is more robust to noise in classification and regression problems. Next, we propose two models based on Lbals loss function, namely, BALS-SVM and BALS-SVR. The Lbals loss function is a non-convex loss function which makes it difficult to optimize. Thus, we design a clipping dual coordinate descent (clipDCD) based half-quadratic algorithm for solving the proposed models. We further find that BALS-SVM and BALS-SVR can be viewed as iterative weighted asymmetric least squares loss function based support vector machines and support vector regression, which enhances the interpretability of the models. Finally, we provide a theoretical analysis of the model based on a general framework of bounded loss function, mainly including Fisher consistency and noise insensitivity. Meanwhile, theoretical guarantees are provided for the proposed models. The results on the simulated dataset and the 14 classification and 11 regression benchmark dataset show that our method is superior compared to the classical methods and some state-of-the-art methods, especially on the noise corrupted dataset. The statistical tests further confirm this fact. Experiments on the Fashion MNIST dataset and gene expression dataset further illustrate that our proposed model also performs well in real environments.
基于有界非对称最小二乘损失函数的鲁棒支持向量机及其在噪声损坏数据中的应用
支持向量机(SVM)是一种流行的机器学习工具,在各个领域都取得了巨大的成功,但它的性能在噪声污染的数据集上受到很大的干扰。本文以有界分位数损失函数为动力,基于期望值与非对称最小二乘损失函数的关系,提出了有界非对称最小二乘损失函数(Lbals损失函数)。Lbals损失函数是对非对称最小二乘损失函数的扩展。lbal损失函数继承了非对称最小二乘损失函数的非对称性和可微性等优点。此外,在分类和回归问题中,Lbals损失函数对噪声具有更强的鲁棒性。接下来,我们提出了基于Lbals损失函数的两种模型,即BALS-SVM和BALS-SVR。Lbals损失函数是一种非凸损失函数,使其难以优化。因此,我们设计了一种基于裁剪双坐标下降(clipDCD)的半二次算法来求解所提出的模型。我们进一步发现,BALS-SVM和BALS-SVR可以看作是基于迭代加权非对称最小二乘损失函数的支持向量机和支持向量回归,增强了模型的可解释性。最后,我们基于有界损失函数的一般框架对模型进行了理论分析,主要包括Fisher一致性和噪声不敏感性。同时,为所提出的模型提供了理论保证。在模拟数据集和14个分类和11个回归基准数据集上的结果表明,我们的方法优于经典方法和一些最先进的方法,特别是在噪声破坏数据集上。统计检验进一步证实了这一事实。在Fashion MNIST数据集和基因表达数据集上的实验进一步表明,我们的模型在真实环境中也表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信