Generation of n-dimensional complex chaotic system via parameter matrix configuration

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jinhui Yao , Yinxing Zhang , Han Bao , Zhongyun Hua
{"title":"Generation of n-dimensional complex chaotic system via parameter matrix configuration","authors":"Jinhui Yao ,&nbsp;Yinxing Zhang ,&nbsp;Han Bao ,&nbsp;Zhongyun Hua","doi":"10.1016/j.chaos.2025.116453","DOIUrl":null,"url":null,"abstract":"<div><div>Complex chaotic systems can exhibit high chaotic complexity due to the presence of complex variables and complex parameters. Most research has focused on real chaotic systems, but complex chaotic systems remain relatively under-explored. To this end, this work presents an <span><math><mi>n</mi></math></span>-dimensional complex chaotic system (<span><math><mi>n</mi></math></span>D-CCS) generation method utilizing complex parametric Pascal matrices. Initially, these matrices are generated and subsequently utilized as the parameter matrices for constructing the <span><math><mi>n</mi></math></span>D chaotic systems. Theoretical analysis demonstrates that the proposed <span><math><mi>n</mi></math></span>D-CCS can exhibit chaotic behavior. Extensive experiments show that the <span><math><mi>n</mi></math></span>D-CCS possesses more robust chaotic performance than existing <span><math><mi>n</mi></math></span>D real chaotic systems. To demonstrate the effectiveness of our method, a four-dimensional complex chaotic map (4D-CCM) is generated and its chaotic behavior is analyzed. Furthermore, we develop a hardware platform to verify the 4D-CCM’s implementation on hardware devices. We also design pseudorandom number generators (PRNGs) using the 4D-CCM and test their randomness against the NIST SP800-22 standard. The result indicates excellent randomness in the PRNGs.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116453"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004667","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Complex chaotic systems can exhibit high chaotic complexity due to the presence of complex variables and complex parameters. Most research has focused on real chaotic systems, but complex chaotic systems remain relatively under-explored. To this end, this work presents an n-dimensional complex chaotic system (nD-CCS) generation method utilizing complex parametric Pascal matrices. Initially, these matrices are generated and subsequently utilized as the parameter matrices for constructing the nD chaotic systems. Theoretical analysis demonstrates that the proposed nD-CCS can exhibit chaotic behavior. Extensive experiments show that the nD-CCS possesses more robust chaotic performance than existing nD real chaotic systems. To demonstrate the effectiveness of our method, a four-dimensional complex chaotic map (4D-CCM) is generated and its chaotic behavior is analyzed. Furthermore, we develop a hardware platform to verify the 4D-CCM’s implementation on hardware devices. We also design pseudorandom number generators (PRNGs) using the 4D-CCM and test their randomness against the NIST SP800-22 standard. The result indicates excellent randomness in the PRNGs.
基于参数矩阵组态的n维复杂混沌系统生成
由于复杂变量和参数的存在,复杂混沌系统具有很高的混沌复杂度。大多数研究都集中在真实的混沌系统上,但对复杂混沌系统的探索相对较少。为此,本文提出了一种利用复参数帕斯卡矩阵的n维复杂混沌系统(nD-CCS)生成方法。首先生成这些矩阵,然后将其作为构造nD混沌系统的参数矩阵。理论分析表明,所提出的nD-CCS可以表现出混沌行为。大量的实验表明,nD- ccs比现有的nD真实混沌系统具有更强的鲁棒性。为了证明该方法的有效性,生成了一个四维复杂混沌映射(4D-CCM),并分析了其混沌行为。此外,我们还开发了一个硬件平台来验证4D-CCM在硬件设备上的实现。我们还使用4D-CCM设计了伪随机数生成器(prng),并根据NIST SP800-22标准测试了它们的随机性。结果表明prng具有良好的随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信