Abubakar Sadiq Mohammed, Eirini Anthi, Omer Rana, Pete Burnap, Andrew Hood
{"title":"STADe: An unsupervised time-windows method of detecting anomalies in oil and gas Industrial Cyber-Physical Systems (ICPS) networks","authors":"Abubakar Sadiq Mohammed, Eirini Anthi, Omer Rana, Pete Burnap, Andrew Hood","doi":"10.1016/j.ijcip.2025.100762","DOIUrl":null,"url":null,"abstract":"<div><div>Critical infrastructure and Operational Technology (OT) are becoming more exposed to cyber attacks due to the integration of OT networks to enterprise networks especially in the case of Industrial Cyber-Physical Systems (ICPS). These technologies that are a huge part of our daily lives usually operate by having sensors and actuators constantly communicating through an industrial network. To secure these industrial networks from cyber attacks, researchers have utilised misuse detection and Anomaly Detection (AD) techniques to detect potential attacks. Misuse detection methods are unable to detect zero-day attacks while AD methods can, but with high false positive rates and high computational overheads. In this paper, we present STADe, a novel Sliding Time-window Anomaly Detection method that uses a sole feature of network packet inter-arrival times to detect anomalous network communications. This work aims to explore a mechanism for detecting breaks in periodicity to flag anomalies. The method was validated using data from a real oil and gas wellhead monitoring testbed containing field flooding, SYN flooding, and Man-in-the-Middle (MITM) attacks — which are attacks that are popularly used to target the availability and integrity of oil and gas critical infrastructure. The results from STADe proved to be effective in detecting these attacks with zero false positives and F1 scores of 0.97, 0.923, and 0.8 respectively. Further experiments carried out to compare STADe with other unsupervised machine learning algorithms – KNN, isolation forest, and Local Outlier Factor (LOF) – resulted in F1 scores of 0.55, 0.673, and 0.408 respectively. STADe outperformed them with an F1 score of 0.933 using the same dataset.</div></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"49 ","pages":"Article 100762"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187454822500023X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Critical infrastructure and Operational Technology (OT) are becoming more exposed to cyber attacks due to the integration of OT networks to enterprise networks especially in the case of Industrial Cyber-Physical Systems (ICPS). These technologies that are a huge part of our daily lives usually operate by having sensors and actuators constantly communicating through an industrial network. To secure these industrial networks from cyber attacks, researchers have utilised misuse detection and Anomaly Detection (AD) techniques to detect potential attacks. Misuse detection methods are unable to detect zero-day attacks while AD methods can, but with high false positive rates and high computational overheads. In this paper, we present STADe, a novel Sliding Time-window Anomaly Detection method that uses a sole feature of network packet inter-arrival times to detect anomalous network communications. This work aims to explore a mechanism for detecting breaks in periodicity to flag anomalies. The method was validated using data from a real oil and gas wellhead monitoring testbed containing field flooding, SYN flooding, and Man-in-the-Middle (MITM) attacks — which are attacks that are popularly used to target the availability and integrity of oil and gas critical infrastructure. The results from STADe proved to be effective in detecting these attacks with zero false positives and F1 scores of 0.97, 0.923, and 0.8 respectively. Further experiments carried out to compare STADe with other unsupervised machine learning algorithms – KNN, isolation forest, and Local Outlier Factor (LOF) – resulted in F1 scores of 0.55, 0.673, and 0.408 respectively. STADe outperformed them with an F1 score of 0.933 using the same dataset.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.