Predicting the greenhouse crop morphological parameters based on RGB-D Computer Vision

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Ziqiu Kang , Bo Zhou , Shulang Fei , Nan Wang
{"title":"Predicting the greenhouse crop morphological parameters based on RGB-D Computer Vision","authors":"Ziqiu Kang ,&nbsp;Bo Zhou ,&nbsp;Shulang Fei ,&nbsp;Nan Wang","doi":"10.1016/j.atech.2025.100968","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate data acquisition of crop morphological parameters is crucial for effective greenhouse management decision-making and remote sensing technologies are increasingly being applied to automate the data collection process. This research utilised an RGB-D based computer vision method to investigate the correlation between the computer vision features and the lettuce morphological parameters, including leaf area, plant height, diameter, and fresh weight. A dataset of lettuce containing over 300 RGB images and depth images of the 3rd Autonomous Greenhouse Challenge was used, and Random Forest, XGBoost and linear regression models were applied in the prediction. The best NRMSE values for diameter, dry matter content, dry weight, fresh weight, height, and leaf area are 0.08, 0.08, 0.07, 0.07, 0.08, and 0.07, which showed a promising accuracy compared to similar studies. This research demonstrates a novel approach to non-destructively estimate greenhouse leafy vegetable morphological parameters.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"11 ","pages":"Article 100968"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525002011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate data acquisition of crop morphological parameters is crucial for effective greenhouse management decision-making and remote sensing technologies are increasingly being applied to automate the data collection process. This research utilised an RGB-D based computer vision method to investigate the correlation between the computer vision features and the lettuce morphological parameters, including leaf area, plant height, diameter, and fresh weight. A dataset of lettuce containing over 300 RGB images and depth images of the 3rd Autonomous Greenhouse Challenge was used, and Random Forest, XGBoost and linear regression models were applied in the prediction. The best NRMSE values for diameter, dry matter content, dry weight, fresh weight, height, and leaf area are 0.08, 0.08, 0.07, 0.07, 0.08, and 0.07, which showed a promising accuracy compared to similar studies. This research demonstrates a novel approach to non-destructively estimate greenhouse leafy vegetable morphological parameters.
基于RGB-D计算机视觉的温室作物形态参数预测
作物形态参数的准确数据采集是温室有效管理决策的关键,遥感技术越来越多地应用于数据采集过程的自动化。本研究利用基于RGB-D的计算机视觉方法,研究生菜叶面积、株高、直径和鲜重等形态参数与计算机视觉特征的相关性。利用生菜数据集,其中包含300多张RGB图像和第三届自主温室挑战赛的深度图像,并采用随机森林、XGBoost和线性回归模型进行预测。直径、干物质含量、干重、鲜重、高和叶面积的最佳NRMSE值分别为0.08、0.08、0.07、0.07、0.08和0.07,与同类研究相比,精度较高。本研究提出了一种无损估算温室叶菜形态参数的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信