Karthik Gopinath , Douglas N. Greve , Colin Magdamo , Steve Arnold , Sudeshna Das , Oula Puonti , Juan Eugenio Iglesias , Alzheimer’s Disease Neuroimaging Initiative
{"title":"“Recon-all-clinical”: Cortical surface reconstruction and analysis of heterogeneous clinical brain MRI","authors":"Karthik Gopinath , Douglas N. Greve , Colin Magdamo , Steve Arnold , Sudeshna Das , Oula Puonti , Juan Eugenio Iglesias , Alzheimer’s Disease Neuroimaging Initiative","doi":"10.1016/j.media.2025.103608","DOIUrl":null,"url":null,"abstract":"<div><div>Surface-based analysis of the cerebral cortex is ubiquitous in human neuroimaging with MRI. It is crucial for tasks like cortical registration, parcellation, and thickness estimation. Traditionally, such analyses require high-resolution, isotropic scans with good gray–white matter contrast, typically a T1-weighted scan with 1 mm resolution. This requirement precludes application of these techniques to most MRI scans acquired for clinical purposes, since they are often anisotropic and lack the required T1-weighted contrast. To overcome this limitation and enable large-scale neuroimaging studies using vast amounts of existing clinical data, we introduce <em>recon-all-clinical</em>, a novel methodology for cortical reconstruction, registration, parcellation, and thickness estimation for clinical brain MRI scans of any resolution and contrast. Our approach employs a hybrid analysis method that combines a convolutional neural network (CNN) trained with domain randomization to predict signed distance functions (SDFs), and classical geometry processing for accurate surface placement while maintaining topological and geometric constraints. The method does not require retraining for different acquisitions, thus simplifying the analysis of heterogeneous clinical datasets. We evaluated <em>recon-all-clinical</em> on multiple public datasets like ADNI, HCP, AIBL, OASIS and including a large clinical dataset of over 9,500 scans. The results indicate that our method produces geometrically precise cortical reconstructions across different MRI contrasts and resolutions, consistently achieving high accuracy in parcellation. Cortical thickness estimates are precise enough to capture aging effects, independently of MRI contrast, even though accuracy varies with slice thickness. Our method is publicly available at <span><span>https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all-clinical</span><svg><path></path></svg></span>, enabling researchers to perform detailed cortical analysis on the huge amounts of already existing clinical MRI scans. This advancement may be particularly valuable for studying rare diseases and underrepresented populations where research-grade MRI data is scarce.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103608"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001550","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Surface-based analysis of the cerebral cortex is ubiquitous in human neuroimaging with MRI. It is crucial for tasks like cortical registration, parcellation, and thickness estimation. Traditionally, such analyses require high-resolution, isotropic scans with good gray–white matter contrast, typically a T1-weighted scan with 1 mm resolution. This requirement precludes application of these techniques to most MRI scans acquired for clinical purposes, since they are often anisotropic and lack the required T1-weighted contrast. To overcome this limitation and enable large-scale neuroimaging studies using vast amounts of existing clinical data, we introduce recon-all-clinical, a novel methodology for cortical reconstruction, registration, parcellation, and thickness estimation for clinical brain MRI scans of any resolution and contrast. Our approach employs a hybrid analysis method that combines a convolutional neural network (CNN) trained with domain randomization to predict signed distance functions (SDFs), and classical geometry processing for accurate surface placement while maintaining topological and geometric constraints. The method does not require retraining for different acquisitions, thus simplifying the analysis of heterogeneous clinical datasets. We evaluated recon-all-clinical on multiple public datasets like ADNI, HCP, AIBL, OASIS and including a large clinical dataset of over 9,500 scans. The results indicate that our method produces geometrically precise cortical reconstructions across different MRI contrasts and resolutions, consistently achieving high accuracy in parcellation. Cortical thickness estimates are precise enough to capture aging effects, independently of MRI contrast, even though accuracy varies with slice thickness. Our method is publicly available at https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all-clinical, enabling researchers to perform detailed cortical analysis on the huge amounts of already existing clinical MRI scans. This advancement may be particularly valuable for studying rare diseases and underrepresented populations where research-grade MRI data is scarce.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.