Farong Liu , Sheng Ren , Jie Li , Haoyang Lv , Fenghui Jiang , Bin Yu
{"title":"SGTB: A graph representation learning model combining transformer and BERT for optimizing gene expression analysis in spatial transcriptomics data","authors":"Farong Liu , Sheng Ren , Jie Li , Haoyang Lv , Fenghui Jiang , Bin Yu","doi":"10.1016/j.compbiolchem.2025.108482","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, spatial transcriptomics (ST) has emerged as an innovative technology that enables the simultaneous acquisition of gene expression information and its spatial distribution at the single-cell or regional level, providing deeper insights into cellular interactions and tissue organization, this technology provides a more holistic view of tissue organization and intercellular dynamics. However, existing methods still face certain limitations in data representation capabilities, making it challenging to fully capture complex spatial dependencies and global features. To address this, this paper proposes an innovative spatial multi-scale graph convolutional network (SGTB) based on large language models, integrating graph convolutional networks (GCN), Transformer, and BERT language models to optimize the representation of spatial transcriptomics data. The Graph Convolutional Network (GCN) employs a multi-layer architecture to extract features from gene expression matrices. Through iterative aggregation of neighborhood information, it captures spatial dependencies among cells and gene co-expression patterns, thereby constructing hierarchical cell embeddings. Subsequently, the model integrates an attention mechanism to assign weights to critical features and leverages Transformer layers to model global relationships, refining the ability of learned representations to reflect variations in spatial patterns. Finally, the model incorporates the BERT language model, mapping cell embeddings into textual inputs to exploit its deep semantic representation capabilities for high-dimensional feature extraction. These features are then fused with the embeddings generated by the Transformer, further optimizing feature learning for spatial transcriptomics data. This approach holds significant application value in improving the accuracy of tasks such as cell type classification and gene regulatory network construction, providing a novel computational framework for deep mining of spatial multi-scale biological data.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"118 ","pages":"Article 108482"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125001422","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, spatial transcriptomics (ST) has emerged as an innovative technology that enables the simultaneous acquisition of gene expression information and its spatial distribution at the single-cell or regional level, providing deeper insights into cellular interactions and tissue organization, this technology provides a more holistic view of tissue organization and intercellular dynamics. However, existing methods still face certain limitations in data representation capabilities, making it challenging to fully capture complex spatial dependencies and global features. To address this, this paper proposes an innovative spatial multi-scale graph convolutional network (SGTB) based on large language models, integrating graph convolutional networks (GCN), Transformer, and BERT language models to optimize the representation of spatial transcriptomics data. The Graph Convolutional Network (GCN) employs a multi-layer architecture to extract features from gene expression matrices. Through iterative aggregation of neighborhood information, it captures spatial dependencies among cells and gene co-expression patterns, thereby constructing hierarchical cell embeddings. Subsequently, the model integrates an attention mechanism to assign weights to critical features and leverages Transformer layers to model global relationships, refining the ability of learned representations to reflect variations in spatial patterns. Finally, the model incorporates the BERT language model, mapping cell embeddings into textual inputs to exploit its deep semantic representation capabilities for high-dimensional feature extraction. These features are then fused with the embeddings generated by the Transformer, further optimizing feature learning for spatial transcriptomics data. This approach holds significant application value in improving the accuracy of tasks such as cell type classification and gene regulatory network construction, providing a novel computational framework for deep mining of spatial multi-scale biological data.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.