Robust inference with incompleteness for logistic regression model

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Cherifi , M.N. El Korso , S. Fortunati , A. Mesloub , L. Ferro-Famil
{"title":"Robust inference with incompleteness for logistic regression model","authors":"M. Cherifi ,&nbsp;M.N. El Korso ,&nbsp;S. Fortunati ,&nbsp;A. Mesloub ,&nbsp;L. Ferro-Famil","doi":"10.1016/j.sigpro.2025.110027","DOIUrl":null,"url":null,"abstract":"<div><div>Logistic regression models traditionally assume observed covariates. However, practical scenarios often involve missing data and outliers, which pose significant challenges. This short communication presents a new approach to solve these issues by integrating random covariates following a Student <span><math><mi>t</mi></math></span>-distribution within the framework of logistic regression. We propose a Robust Stochastic Approximation Expectation–Maximization algorithm suitable for Logistic Regression (REM-LR) that, in addition, is able to improve the resilience of the model against both missing values and outliers.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"236 ","pages":"Article 110027"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425001410","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Logistic regression models traditionally assume observed covariates. However, practical scenarios often involve missing data and outliers, which pose significant challenges. This short communication presents a new approach to solve these issues by integrating random covariates following a Student t-distribution within the framework of logistic regression. We propose a Robust Stochastic Approximation Expectation–Maximization algorithm suitable for Logistic Regression (REM-LR) that, in addition, is able to improve the resilience of the model against both missing values and outliers.
逻辑回归模型的不完备性鲁棒推理
逻辑回归模型传统上假设观察到的协变量。然而,实际情况往往涉及数据缺失和异常值,这构成了重大挑战。这种简短的交流提出了一种新的方法来解决这些问题,通过在逻辑回归的框架内整合随机协变量,遵循学生t分布。我们提出了一种适用于逻辑回归(REM-LR)的鲁棒随机逼近期望最大化算法,此外,该算法能够提高模型对缺失值和异常值的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信