{"title":"Multi-fish tracking with underwater image enhancement by deep network in marine ecosystems","authors":"Prerana Mukherjee , Srimanta Mandal , Koteswar Rao Jerripothula , Vrishabhdhwaj Maharshi , Kashish Katara","doi":"10.1016/j.image.2025.117321","DOIUrl":null,"url":null,"abstract":"<div><div>Tracking marine life plays a crucial role in understanding migration patterns, movements, and population growth of underwater species. Deep learning-based fish-tracking networks have been actively researched and developed, yielding promising results. In this work, we propose an end-to-end deep learning framework for tracking fish in unconstrained marine environments. The core innovation of our approach is a Siamese-based architecture integrated with an image enhancement module, designed to measure appearance similarity effectively. The enhancement module consists of convolutional layers and a squeeze-and-excitation block, pre-trained on degraded and clean image pairs to address underwater distortions. This enhanced feature representation is leveraged within the Siamese framework to compute an appearance similarity score, which is further refined using prediction scores based on fish movement patterns. To ensure robust tracking, we combine the appearance similarity score, prediction score, and IoU-based similarity score to generate fish trajectories using the Hungarian algorithm. Our framework significantly reduces ID switches by 35.6% on the Fish4Knowledge dataset and 3.8% on the GMOT-40 fish category, all while maintaining high tracking accuracy. The source code of this work is available here: <span><span>https://github.com/srimanta-mandal/Multi-Fish-Tracking-with-Underwater-Image-Enhancement</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"138 ","pages":"Article 117321"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596525000682","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tracking marine life plays a crucial role in understanding migration patterns, movements, and population growth of underwater species. Deep learning-based fish-tracking networks have been actively researched and developed, yielding promising results. In this work, we propose an end-to-end deep learning framework for tracking fish in unconstrained marine environments. The core innovation of our approach is a Siamese-based architecture integrated with an image enhancement module, designed to measure appearance similarity effectively. The enhancement module consists of convolutional layers and a squeeze-and-excitation block, pre-trained on degraded and clean image pairs to address underwater distortions. This enhanced feature representation is leveraged within the Siamese framework to compute an appearance similarity score, which is further refined using prediction scores based on fish movement patterns. To ensure robust tracking, we combine the appearance similarity score, prediction score, and IoU-based similarity score to generate fish trajectories using the Hungarian algorithm. Our framework significantly reduces ID switches by 35.6% on the Fish4Knowledge dataset and 3.8% on the GMOT-40 fish category, all while maintaining high tracking accuracy. The source code of this work is available here: https://github.com/srimanta-mandal/Multi-Fish-Tracking-with-Underwater-Image-Enhancement.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.