Bridging time across null horizons

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Anıl Zenginoğlu
{"title":"Bridging time across null horizons","authors":"Anıl Zenginoğlu","doi":"10.1007/s10714-025-03410-4","DOIUrl":null,"url":null,"abstract":"<div><p>General relativity, as a diffeomorphism-invariant theory, allows the description of physical phenomena in a wide variety of coordinate systems. In the presence of boundaries, such as event horizons and null infinity, time coordinates must be carefully adapted to the global causal structure of spacetime to ensure a computationally efficient description. Horizon-penetrating time is used to describe the dynamics of infalling matter and radiation across the event horizon, while hyperboloidal time is used to study the propagation of radiation toward the idealized observer at null infinity. In this paper, we explore the historical and mathematical connection between horizon-penetrating and hyperboloidal time coordinates, arguing that both classes of coordinates are simply regular choices of time across null horizons. We review the height-function formalism in stationary spacetimes, providing examples that may be useful in computations, such as source-adapted foliations or Fefferman–Graham–Bondi coordinates near null infinity. We discuss bridges connecting the boundaries of spacetime through a time hypersurface across null horizons, including the event horizon, null infinity, and the cosmological horizon.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-025-03410-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03410-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

General relativity, as a diffeomorphism-invariant theory, allows the description of physical phenomena in a wide variety of coordinate systems. In the presence of boundaries, such as event horizons and null infinity, time coordinates must be carefully adapted to the global causal structure of spacetime to ensure a computationally efficient description. Horizon-penetrating time is used to describe the dynamics of infalling matter and radiation across the event horizon, while hyperboloidal time is used to study the propagation of radiation toward the idealized observer at null infinity. In this paper, we explore the historical and mathematical connection between horizon-penetrating and hyperboloidal time coordinates, arguing that both classes of coordinates are simply regular choices of time across null horizons. We review the height-function formalism in stationary spacetimes, providing examples that may be useful in computations, such as source-adapted foliations or Fefferman–Graham–Bondi coordinates near null infinity. We discuss bridges connecting the boundaries of spacetime through a time hypersurface across null horizons, including the event horizon, null infinity, and the cosmological horizon.

跨越零视界的桥接时间
广义相对论,作为一个微分同态不变理论,允许在各种各样的坐标系中描述物理现象。在存在边界的情况下,如事件视界和零无穷大,时间坐标必须仔细地适应时空的全局因果结构,以确保计算效率的描述。视界穿透时间用于描述入射物质和辐射跨越视界的动力学,而双曲时间用于研究零无穷远处辐射向理想观测者的传播。在本文中,我们探讨了穿透视界和双曲时间坐标之间的历史和数学联系,认为这两类坐标都是跨越零视界的时间的简单规则选择。我们回顾了固定时空中的高度函数形式,提供了可能在计算中有用的例子,例如零无穷附近的源适应叶状或Fefferman-Graham-Bondi坐标。我们讨论通过跨越零视界的时间超表面连接时空边界的桥梁,包括事件视界、零无限和宇宙视界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信