Coupling particle-in-cell and magnetohydrodynamics methods for realistic solar flare models

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
M. Haahr, B. V. Gudiksen, Å. Nordlund
{"title":"Coupling particle-in-cell and magnetohydrodynamics methods for realistic solar flare models","authors":"M. Haahr, B. V. Gudiksen, Å. Nordlund","doi":"10.1051/0004-6361/202452117","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Simulating solar flares requires capturing both large-scale magnetohydrodynamic (MHD) evolution and small-scale kinetic processes near reconnection sites. Bridging these scales has been a significant computational challenge.<i>Aims.<i/> This study introduces a Particle-In-Cell (PIC) solver integrated within the DISPATCH framework, facilitating seamless embedding within MHD simulations. This development aims to enable self-consistent multi-scale solar flare simulations.<i>Methods.<i/> Our PIC solver, inspired by the PhotonPlasma code, addresses the Vlasov-Maxwell equations in collisionless plasma. We validate its accuracy through fundamental plasma tests – including plasma oscillations, two-stream instability, and current sheet reconnection. To make kinetic simulations computationally feasible, we employ physical adjustment of constants (PAC), modifying the speed of light, elementary charge, and electron mass to shift plasma scales. Additionally, we implement and validate a coupling strategy that enables smooth transitions between kinetic and fluid regimes.<i>Results.<i/> The PIC solver successfully recovers expected plasma dynamics and electromagnetic field behaviour. Our analysis highlights the effects of PAC on reconnection dynamics, underscoring the importance of transparent and well-documented scaling choices. Test cases involving propagating waves across PIC-MHD interfaces confirm the robustness of our coupling approach.<i>Conclusions.<i/> The integration of the PIC solver into the DISPATCH framework makes it possible to run self-consistent, multiscale solar flare simulations. Our approach provides a computationally efficient foundation for investigating reconnection physics in large-scale astrophysical plasmas.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"17 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452117","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Simulating solar flares requires capturing both large-scale magnetohydrodynamic (MHD) evolution and small-scale kinetic processes near reconnection sites. Bridging these scales has been a significant computational challenge.Aims. This study introduces a Particle-In-Cell (PIC) solver integrated within the DISPATCH framework, facilitating seamless embedding within MHD simulations. This development aims to enable self-consistent multi-scale solar flare simulations.Methods. Our PIC solver, inspired by the PhotonPlasma code, addresses the Vlasov-Maxwell equations in collisionless plasma. We validate its accuracy through fundamental plasma tests – including plasma oscillations, two-stream instability, and current sheet reconnection. To make kinetic simulations computationally feasible, we employ physical adjustment of constants (PAC), modifying the speed of light, elementary charge, and electron mass to shift plasma scales. Additionally, we implement and validate a coupling strategy that enables smooth transitions between kinetic and fluid regimes.Results. The PIC solver successfully recovers expected plasma dynamics and electromagnetic field behaviour. Our analysis highlights the effects of PAC on reconnection dynamics, underscoring the importance of transparent and well-documented scaling choices. Test cases involving propagating waves across PIC-MHD interfaces confirm the robustness of our coupling approach.Conclusions. The integration of the PIC solver into the DISPATCH framework makes it possible to run self-consistent, multiscale solar flare simulations. Our approach provides a computationally efficient foundation for investigating reconnection physics in large-scale astrophysical plasmas.
真实太阳耀斑模型的耦合粒子池和磁流体动力学方法
上下文。模拟太阳耀斑需要捕获大尺度的磁流体动力学(MHD)演化和重联点附近的小尺度动力学过程。在这些尺度之间架起桥梁一直是一个重大的计算挑战。本研究引入了一个集成在DISPATCH框架中的粒子单元(PIC)求解器,促进了在MHD模拟中的无缝嵌入。这一发展旨在实现自一致的多尺度太阳耀斑模拟。我们的PIC求解器,受到PhotonPlasma代码的启发,解决了无碰撞等离子体中的Vlasov-Maxwell方程。我们通过基本的等离子体测试来验证其准确性,包括等离子体振荡、双流不稳定性和电流片重连。为了使动力学模拟在计算上可行,我们采用物理常数调整(PAC),修改光速,基本电荷和电子质量来改变等离子体尺度。此外,我们实现并验证了一种耦合策略,使动力学和流体状态之间的平滑过渡成为可能。PIC求解器成功地恢复了预期的等离子体动力学和电磁场行为。我们的分析强调了PAC对重新连接动态的影响,强调了透明和充分记录的扩展选择的重要性。涉及跨PIC-MHD接口传播波的测试用例证实了我们的耦合方法的鲁棒性。PIC求解器与DISPATCH框架的集成使得运行自一致的多尺度太阳耀斑模拟成为可能。我们的方法为研究大规模天体物理等离子体中的重联物理提供了一个计算效率高的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信