Jan Tiede, Joshua Leon Lovell, Christian Jordan, Armin Moghimi, Torsten Schlurmann
{"title":"Assessment of sand nourishment dynamics under repeated storm impact supported by machine learning-based analysis of UAV data","authors":"Jan Tiede, Joshua Leon Lovell, Christian Jordan, Armin Moghimi, Torsten Schlurmann","doi":"10.3389/fmars.2025.1537066","DOIUrl":null,"url":null,"abstract":"Understanding beach dynamics and the long-term evolution of beach nourishment projects is critical for sustainable coastal management, particularly in the face of rising sea levels and increasingly variable storm climates. This study examines the development of a large-scale sand nourishment (600,000 m³) in the southwestern Baltic Sea over 25 months (October 2021–November 2023) using UAV-derived digital surface models (DSMs) and machine learning (ML). High-frequency, multi-temporal UAV surveys enabled detailed analyses of the development of the nourished beach and dune. Results revealed that the volumetric impact of the 100-year flood in October 2023 was comparable to the cumulative effects of the October 2022–January 2023 storm season. This demonstrates that both episodic extreme events and the cumulative impacts shape the morphological evolution of the nourishment. The study also highlights sediment transport reversals under easterly winds, promoting longer-term stability by retaining sediment within the system. By standardizing volumetric analyses using tools equipped with ML, this research provides actionable insights for adaptive management and establishes a framework for comparable, accurate assessments of nourishment lifetime. In particular, these methods efficiently capture subtle variations in coastline orientation, wave incidence angles, and resulting alongshore beach dynamics, offering valuable insights for optimizing nourishment strategies. These findings underscore the importance of continuous, high-resolution monitoring in developing sustainable strategies for storm-driven erosion and sea level rise.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"62 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1537066","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding beach dynamics and the long-term evolution of beach nourishment projects is critical for sustainable coastal management, particularly in the face of rising sea levels and increasingly variable storm climates. This study examines the development of a large-scale sand nourishment (600,000 m³) in the southwestern Baltic Sea over 25 months (October 2021–November 2023) using UAV-derived digital surface models (DSMs) and machine learning (ML). High-frequency, multi-temporal UAV surveys enabled detailed analyses of the development of the nourished beach and dune. Results revealed that the volumetric impact of the 100-year flood in October 2023 was comparable to the cumulative effects of the October 2022–January 2023 storm season. This demonstrates that both episodic extreme events and the cumulative impacts shape the morphological evolution of the nourishment. The study also highlights sediment transport reversals under easterly winds, promoting longer-term stability by retaining sediment within the system. By standardizing volumetric analyses using tools equipped with ML, this research provides actionable insights for adaptive management and establishes a framework for comparable, accurate assessments of nourishment lifetime. In particular, these methods efficiently capture subtle variations in coastline orientation, wave incidence angles, and resulting alongshore beach dynamics, offering valuable insights for optimizing nourishment strategies. These findings underscore the importance of continuous, high-resolution monitoring in developing sustainable strategies for storm-driven erosion and sea level rise.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.