Multiscale Simulations and Property Predictions for Organic Luminescent Aggregates

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoyan Zheng, Qian Peng
{"title":"Multiscale Simulations and Property Predictions for Organic Luminescent Aggregates","authors":"Xiaoyan Zheng,&nbsp;Qian Peng","doi":"10.1002/wcms.70021","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Precise regulation of aggregation-state luminescence is a crucial and challenging task in the field of organic luminescence. The luminescence properties of organic molecular aggregates are intricately governed by both molecular conformations and intermolecular packing structures. The inherent conformational flexibility and the cooperative interplay of diverse intermolecular interactions in organic molecular aggregates give rise to numerous kinetically stable states besides the thermodynamically stable state, as well as multi-level couplings associated with excited states, which make the prediction of luminescent properties extraordinarily complicated and challenging. In this review, we first introduce a general theoretical protocol that combines multiscale modeling, kinetic network model, and excited-state decay rate theory. Then, the mechanism of luminescence and its regulation are presented for various organic molecular aggregates ranging from homogenous crystals, cocrystals, heterogenous amorphous aggregates, to kinetically controlled assemblies. Importantly, the mapping relationship is established between the formation processes of organic molecular aggregates and the corresponding dynamic luminescent properties, which provide valuable insights for a deeper understanding of aggregation-state luminescent properties and facilitate the precise regulation of organic luminescent materials.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 2","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70021","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise regulation of aggregation-state luminescence is a crucial and challenging task in the field of organic luminescence. The luminescence properties of organic molecular aggregates are intricately governed by both molecular conformations and intermolecular packing structures. The inherent conformational flexibility and the cooperative interplay of diverse intermolecular interactions in organic molecular aggregates give rise to numerous kinetically stable states besides the thermodynamically stable state, as well as multi-level couplings associated with excited states, which make the prediction of luminescent properties extraordinarily complicated and challenging. In this review, we first introduce a general theoretical protocol that combines multiscale modeling, kinetic network model, and excited-state decay rate theory. Then, the mechanism of luminescence and its regulation are presented for various organic molecular aggregates ranging from homogenous crystals, cocrystals, heterogenous amorphous aggregates, to kinetically controlled assemblies. Importantly, the mapping relationship is established between the formation processes of organic molecular aggregates and the corresponding dynamic luminescent properties, which provide valuable insights for a deeper understanding of aggregation-state luminescent properties and facilitate the precise regulation of organic luminescent materials.

Abstract Image

有机发光聚集体的多尺度模拟与性质预测
聚集态发光的精确调控是有机发光领域的一项重要而富有挑战性的任务。有机分子聚集体的发光特性受分子构象和分子间堆积结构的复杂控制。有机分子聚集体固有的构象灵活性和不同分子间相互作用的协同相互作用,除了热力学稳定状态外,还产生了许多动力学稳定状态,以及与激发态相关的多层次耦合,这使得发光性质的预测异常复杂和具有挑战性。本文首先介绍了一种综合多尺度建模、动力学网络模型和激发态衰减率理论的通用理论协议。然后,介绍了各种有机分子聚集体的发光机理及其调控,包括均晶、共晶、异相非晶聚集体和动力学控制的聚集体。重要的是,建立了有机分子聚集体的形成过程与相应的动态发光特性之间的映射关系,为更深入地了解聚集态发光特性和促进有机发光材料的精确调控提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信