Min Chen, Junfeng Jiang, Tingting Xie, Yingping Zhuang, Jianye Xia
{"title":"Allosteric Effectors Outcompete Transcript Levels and Substrate Concentration in Regulating Central Carbon Flux During the Crabtree Effect Transition","authors":"Min Chen, Junfeng Jiang, Tingting Xie, Yingping Zhuang, Jianye Xia","doi":"10.1002/biot.70024","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>While the metabolic shift in <i>Saccharomyces cerevisiae</i> across the Crabtree effect is well-documented, the role of allosteric regulation in this transition remains unclear. Here, we investigated allosteric regulation by inducing a growth rate shift from 0.2 to 0.35 h. Our results revealed 35 regulatory interactions across 23 central carbon metabolism reactions, with allosteric effectors explaining 29% of flux changes—surpassing the contributions of transcript abundance and substrate concentration. Additionally, key Crabtree-responsive reactions' flux changes were co-regulated by allosteric effectors, transcript abundance, and enzyme turnover numbers. These underscore the significance of allosteric regulation in metabolic adaptation during growth rate transitions in <i>Saccharomyces cerevisiae</i>.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.70024","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
While the metabolic shift in Saccharomyces cerevisiae across the Crabtree effect is well-documented, the role of allosteric regulation in this transition remains unclear. Here, we investigated allosteric regulation by inducing a growth rate shift from 0.2 to 0.35 h. Our results revealed 35 regulatory interactions across 23 central carbon metabolism reactions, with allosteric effectors explaining 29% of flux changes—surpassing the contributions of transcript abundance and substrate concentration. Additionally, key Crabtree-responsive reactions' flux changes were co-regulated by allosteric effectors, transcript abundance, and enzyme turnover numbers. These underscore the significance of allosteric regulation in metabolic adaptation during growth rate transitions in Saccharomyces cerevisiae.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.