An Efficient Parallel Branch Network for Multi-Class Classification of Prostate Cancer From Histopathological Images

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Vishal Srivastava, Akshaya Prabhu, Sravya Nedungatt, K. Vibha Damodara, Shyam Lal, Jyoti Kini
{"title":"An Efficient Parallel Branch Network for Multi-Class Classification of Prostate Cancer From Histopathological Images","authors":"Vishal Srivastava,&nbsp;Akshaya Prabhu,&nbsp;Sravya Nedungatt,&nbsp;K. Vibha Damodara,&nbsp;Shyam Lal,&nbsp;Jyoti Kini","doi":"10.1002/ima.70092","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Prostate cancer is one of the prevalent forms of cancer, posing a significant health concern for men. Accurate detection and classification of prostate cancer are crucial for effective diagnosis and treatment planning. Histopathological images play a pivotal role in identifying prostate cancer by enabling pathologists to identify cellular abnormalities and tumor characteristics. With the rapid advancements in deep learning, Convolutional Neural Networks (CNNs) have emerged as a powerful tool for tackling complex computer vision tasks, including object detection, classification, and segmentation. This paper proposes a Parallel Branch Network (PBN), a CNN architecture specifically designed for the automatic classification of prostate cancer into its subtypes from histopathological images. The paper introduces a novel Efficient Residual (ER) block that enhances feature representation using residual learning and multi-scale feature extraction. By utilizing multiple branches with different filter reduction ratios and dense attention mechanisms, the block captures diverse features while preserving essential information. The proposed PBN model achieved a classification accuracy of 93.16% on the Prostate Gleason dataset, outperforming all other comparison models.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70092","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer is one of the prevalent forms of cancer, posing a significant health concern for men. Accurate detection and classification of prostate cancer are crucial for effective diagnosis and treatment planning. Histopathological images play a pivotal role in identifying prostate cancer by enabling pathologists to identify cellular abnormalities and tumor characteristics. With the rapid advancements in deep learning, Convolutional Neural Networks (CNNs) have emerged as a powerful tool for tackling complex computer vision tasks, including object detection, classification, and segmentation. This paper proposes a Parallel Branch Network (PBN), a CNN architecture specifically designed for the automatic classification of prostate cancer into its subtypes from histopathological images. The paper introduces a novel Efficient Residual (ER) block that enhances feature representation using residual learning and multi-scale feature extraction. By utilizing multiple branches with different filter reduction ratios and dense attention mechanisms, the block captures diverse features while preserving essential information. The proposed PBN model achieved a classification accuracy of 93.16% on the Prostate Gleason dataset, outperforming all other comparison models.

基于组织病理图像的前列腺癌多类分类的高效并行分支网络
前列腺癌是一种常见的癌症,对男性的健康构成重大威胁。准确的检测和分类对于有效的诊断和治疗计划至关重要。组织病理学图像通过使病理学家能够识别细胞异常和肿瘤特征,在识别前列腺癌方面发挥关键作用。随着深度学习的快速发展,卷积神经网络(cnn)已经成为处理复杂计算机视觉任务的强大工具,包括对象检测、分类和分割。本文提出了一种并行分支网络(Parallel Branch Network, PBN),这是一种专门为从组织病理图像中自动分类前列腺癌亚型而设计的CNN架构。本文介绍了一种利用残差学习和多尺度特征提取增强特征表示的高效残差块。通过使用具有不同滤除率和密集关注机制的多个分支,块在保留基本信息的同时捕获了不同的特征。所提出的PBN模型在前列腺Gleason数据集上的分类准确率达到93.16%,优于所有其他比较模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信