Frequency-informed transformer for real-time water pipeline leak detection

Fengnian Liu, Ding Wang, Junya Tang, Lei Wang
{"title":"Frequency-informed transformer for real-time water pipeline leak detection","authors":"Fengnian Liu,&nbsp;Ding Wang,&nbsp;Junya Tang,&nbsp;Lei Wang","doi":"10.1007/s43684-025-00094-0","DOIUrl":null,"url":null,"abstract":"<div><p>Water pipeline leaks pose significant risks to urban infrastructure, leading to water wastage and potential structural damage. Existing leak detection methods often face challenges, such as heavily relying on the manual selection of frequency bands or complex feature extraction, which can be both labour-intensive and less effective. To address these limitations, this paper introduces a Frequency-Informed Transformer model, which integrates the Fast Fourier Transform and self-attention mechanisms to enhance water pipe leak detection accuracy. Experimental results show that FiT achieves 99.9% accuracy in leak detection and 98.7% in leak type classification, surpassing other models in both accuracy and processing speed, with an efficient response time of 0.25 seconds. By significantly simplifying key features and frequency band selection and improving accuracy and response time, the proposed method offers a potential solution for real-time water leak detection, enabling timely interventions and more effective pipeline safety management.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-025-00094-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-025-00094-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water pipeline leaks pose significant risks to urban infrastructure, leading to water wastage and potential structural damage. Existing leak detection methods often face challenges, such as heavily relying on the manual selection of frequency bands or complex feature extraction, which can be both labour-intensive and less effective. To address these limitations, this paper introduces a Frequency-Informed Transformer model, which integrates the Fast Fourier Transform and self-attention mechanisms to enhance water pipe leak detection accuracy. Experimental results show that FiT achieves 99.9% accuracy in leak detection and 98.7% in leak type classification, surpassing other models in both accuracy and processing speed, with an efficient response time of 0.25 seconds. By significantly simplifying key features and frequency band selection and improving accuracy and response time, the proposed method offers a potential solution for real-time water leak detection, enabling timely interventions and more effective pipeline safety management.

频率通知变压器用于实时水管道泄漏检测
供水管道泄漏对城市基础设施构成重大风险,导致水资源浪费和潜在的结构破坏。现有的泄漏检测方法经常面临挑战,例如严重依赖于手动选择频带或复杂的特征提取,这既费时又低效。为了解决这些限制,本文引入了一种频率通知变压器模型,该模型集成了快速傅里叶变换和自关注机制,以提高水管泄漏检测的准确性。实验结果表明,FiT的泄漏检测准确率为99.9%,泄漏类型分类准确率为98.7%,在准确率和处理速度上均优于其他模型,有效响应时间为0.25秒。通过显著简化关键特征和频段选择,提高准确性和响应时间,该方法为实时漏水检测提供了潜在的解决方案,能够及时干预,更有效地管理管道安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信