Enhanced Degradation of Oxytetracycline Hydrochloride: A Comparative Study of Adsorption and Catalytic Wet Air Oxidation Using Cuttlefish Bone/CuFe2O4 Ferrite Composites

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
İlayda Özarabacı, Gülin Ersöz
{"title":"Enhanced Degradation of Oxytetracycline Hydrochloride: A Comparative Study of Adsorption and Catalytic Wet Air Oxidation Using Cuttlefish Bone/CuFe2O4 Ferrite Composites","authors":"İlayda Özarabacı,&nbsp;Gülin Ersöz","doi":"10.1007/s10563-025-09447-4","DOIUrl":null,"url":null,"abstract":"<div><p>The direct and sequential application of adsorption and catalytic wet air oxidation (CWAO) methods was evaluated for the removal of the veterinary antibiotic oxytetracycline hydrochloride (OTC-HCl) from wastewater. Cuttlefish bone (CFB), a natural marine material, was employed as both an adsorbent and a catalyst support to synthesize the composite CuFe₂O₄/CFB material. The optimal conditions for OTC-HCl adsorption were found to be 0.09 g/L CFB, pH 7.6, and 282 rpm, resulting in a 24% removal efficiency. The Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models were evaluated, with the Temkin isotherm identified as the most suitable. The adsorption kinetics followed a second-order kinetic model. The Weber–Morris intraparticle diffusion model suggested that both liquid film and intraparticle diffusion processes govern the adsorption kinetics. In the catalytic wet air oxidation process, a 75% removal efficiency was achieved at 0.5 g/L CuFe₂O₄/CFB, pH 4, and 100 °C. The most suitable kinetic model for describing the CWAO of OTC-HCl was found to be a two-step first-order reaction rate model. In the hybrid treatment process, CWAO was applied following adsorption, and toxicity tests indicated that no toxic by-products were generated during the sequential treatment.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"29 2","pages":"167 - 184"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-025-09447-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The direct and sequential application of adsorption and catalytic wet air oxidation (CWAO) methods was evaluated for the removal of the veterinary antibiotic oxytetracycline hydrochloride (OTC-HCl) from wastewater. Cuttlefish bone (CFB), a natural marine material, was employed as both an adsorbent and a catalyst support to synthesize the composite CuFe₂O₄/CFB material. The optimal conditions for OTC-HCl adsorption were found to be 0.09 g/L CFB, pH 7.6, and 282 rpm, resulting in a 24% removal efficiency. The Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models were evaluated, with the Temkin isotherm identified as the most suitable. The adsorption kinetics followed a second-order kinetic model. The Weber–Morris intraparticle diffusion model suggested that both liquid film and intraparticle diffusion processes govern the adsorption kinetics. In the catalytic wet air oxidation process, a 75% removal efficiency was achieved at 0.5 g/L CuFe₂O₄/CFB, pH 4, and 100 °C. The most suitable kinetic model for describing the CWAO of OTC-HCl was found to be a two-step first-order reaction rate model. In the hybrid treatment process, CWAO was applied following adsorption, and toxicity tests indicated that no toxic by-products were generated during the sequential treatment.

墨鱼骨/CuFe2O4铁氧体复合材料对盐酸土霉素的吸附和催化湿式空气氧化的比较研究
考察了吸附法和催化湿式空气氧化法(CWAO)直接法和顺序法对兽药废水中盐酸土霉素(OTC-HCl)的去除效果。以天然海洋材料墨鱼骨(CFB)为吸附剂和催化剂载体,合成了CuFe₂O₄/CFB复合材料。结果表明,最佳条件为0.09 g/L CFB, pH 7.6,转速282 rpm,去除率为24%。评估了Langmuir、Freundlich、Temkin和Dubinin-Radushkevich等温线模型,其中Temkin等温线被认为是最合适的。吸附动力学服从二级动力学模型。Weber-Morris颗粒内扩散模型表明,液膜和颗粒内扩散过程共同控制着吸附动力学。在催化湿式空气氧化工艺中,在0.5 g/L CuFe₂O₄/CFB、pH 4、100℃条件下,去除率达到75%。结果表明,二阶反应速率模型最适合描述OTC-HCl的CWAO反应。在混合处理过程中,吸附后使用CWAO,毒性试验表明,在顺序处理过程中没有产生有毒副产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信