{"title":"Tuning parameter selection for the adaptive nuclear norm regularized trace regression","authors":"Yiting Ma, Pan Shang, Lingchen Kong","doi":"10.1007/s10463-025-00926-z","DOIUrl":null,"url":null,"abstract":"<div><p>Regularized models have been applied in lots of areas in recent years, with high dimensional data sets being popular. Because that tuning parameter decides the theoretical performance and computational efficiency of the regularized models, tuning parameter selection is a basic and important issue. We consider the tuning parameter selection for adaptive nuclear norm regularized trace regression, which achieves by the Bayesian information criterion (BIC). The proposed BIC is established with the help of an unbiased estimator of degrees of freedom. Under some regularized conditions, this BIC is proved to achieve the rank consistency of the tuning parameter selection. That is the model solution under selected tuning parameter converges to the true solution and has the same rank with that of the true solution in probability. Some numerical results are presented to evaluate the performance of the proposed BIC on tuning parameter selection.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"77 3","pages":"491 - 516"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-025-00926-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Regularized models have been applied in lots of areas in recent years, with high dimensional data sets being popular. Because that tuning parameter decides the theoretical performance and computational efficiency of the regularized models, tuning parameter selection is a basic and important issue. We consider the tuning parameter selection for adaptive nuclear norm regularized trace regression, which achieves by the Bayesian information criterion (BIC). The proposed BIC is established with the help of an unbiased estimator of degrees of freedom. Under some regularized conditions, this BIC is proved to achieve the rank consistency of the tuning parameter selection. That is the model solution under selected tuning parameter converges to the true solution and has the same rank with that of the true solution in probability. Some numerical results are presented to evaluate the performance of the proposed BIC on tuning parameter selection.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.